-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
81 lines (63 loc) · 2.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import argparse
import flask
import redis
import json
import helpers
import time
import settings
import cv2
app = flask.Flask(__name__)
db = redis.StrictRedis(host=settings.REDIS_HOST,
port=settings.REDIS_PORT, db=settings.REDIS_DB)
def classify_process():
print("[INFO] Loading model")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
print("[INFO] Model loaded")
while True:
queue = db.lrange(settings.IMAGE_QUEUE, 0, settings.BATCH_SIZE - 1)
imageIDs = []
batch = None
for q in queue:
q = json.loads(q.decode("utf-8"))
image = helpers.base64_decode_image(q["image"], settings.IMAGE_DTYPE, (
1, settings.IMAGE_CHANS, settings.IMAGE_HEIGHT, settings.IMAGE_WIDTH))
if batch is None:
batch = image
else:
batch = np.vstack([batch, image])
imageIDs.append(q["id"])
if len(imageIDs) > 0:
print("[INFO] Batch size: {}".format(batch.shape))
print("[INFO] Computing object detection")
net.setInput(batch)
detections = net.forward()
output = []
for imageID in imageIDs:
for i in np.arange(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args["confidence"]:
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7]
(startX, startY, endX, endY) = box
r = {"label": CLASSES[idx],
"probability": float(confidence),
"startX":float(startX), "startY": float(startY),
"endX": float(endX), "endY": float(endY)}
output.append(r)
db.set(imageID, json.dumps(output))
db.ltrim(settings.IMAGE_QUEUE, len(imageIDs), -1)
time.sleep(settings.SERVER_SLEEP)
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize list of class labels MobileNet SSD
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
classify_process()