From b6df463884c7db1ab4089fef464cdd87c946a8d5 Mon Sep 17 00:00:00 2001 From: Jacan Chaplais Date: Tue, 3 Oct 2023 16:25:06 +0100 Subject: [PATCH] parallelised cluster coeff --- graphicle/calculate.py | 19 +++++++++++++------ 1 file changed, 13 insertions(+), 6 deletions(-) diff --git a/graphicle/calculate.py b/graphicle/calculate.py index 9191bab..9d62e70 100644 --- a/graphicle/calculate.py +++ b/graphicle/calculate.py @@ -559,12 +559,12 @@ def _delta_R_symmetric( return result -@nb.njit("float32[:](bool_[:, :])") +@nb.njit("float32[:](bool_[:, :])", parallel=True) def _clust_coeffs(adj: base.BoolVector) -> base.FloatVector: num_nodes = adj.shape[0] coefs = np.empty(num_nodes, dtype=np.float32) - for node_idx, row in enumerate(adj): - neibs = np.flatnonzero(row) + for node_idx in nb.prange(num_nodes): + neibs = np.flatnonzero(adj[node_idx, :]) num_neibs = neibs.shape[0] if num_neibs < 2: coefs[node_idx] = 0.0 @@ -575,7 +575,10 @@ def _clust_coeffs(adj: base.BoolVector) -> base.FloatVector: def cluster_coeff_distbn( - pmu: "MomentumArray", radius: float, pseudo: bool = True + pmu: "MomentumArray", + radius: float, + pseudo: bool = True, + threads: int = 1, ) -> base.FloatVector: """A measure of clustering for a particle point-cloud. Transforms point-cloud into a graph, where node neighbourhood is determined by @@ -596,15 +599,19 @@ def cluster_coeff_distbn( pseudo : bool If True, will use pseudorapidity, rather than true rapidity. Default is True. + threads : int + Number of threads to use in the parallel portions of the + calculation. Returns ------- ndarray[float32] Clustering coefficients of the particles in the point-cloud. """ - adj = pmu.delta_R(pmu, pseudo) < radius + adj = pmu.delta_R(pmu, pseudo, threads) < radius np.fill_diagonal(adj, False) - return _clust_coeffs(adj) + with _thread_scope(threads): + return _clust_coeffs(adj) @ctx.contextmanager