-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmain.py
369 lines (349 loc) · 17.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
'''
Desc: 可转债数据入口
File: /main.py
Project: convertible-bond
File Created: Saturday, 23rd July 2022 9:09:56 pm
-----
Copyright (c) 2022 Camel Lu
'''
import os
import re
import string
import json
import time
from datetime import datetime
import pandas as pd
import filter
from lib.mysnowflake import IdWorker
from utils.index import get_bs_source, store_database, output_excel, delete_key_for_store, plot
from utils.json import write_fund_json_data
from config import is_backtest, rename_map, strategy_list, out_dir, summary_filename, multiple_factors_config
from strategy.multiple_factors import impl_multiple_factors
repair_flag_style = 'color:blue'
repair_ransom_style = 'color:red'
pre_ransom_style = 'color:Fuchsia'
def impl(is_output, is_save_database, *, date, compare_date):
isReadLocal = False
output_path = './html/' + date + "_output.html"
print(f"上期时间为:{compare_date}")
last_map = {}
is_start = date == compare_date
if is_start == False:
last_path = f'{out_dir}{compare_date}_cb_list.xlsx'
xls = pd.ExcelFile(last_path, engine='openpyxl')
df_all_last = xls.parse("All_ROW")
df_all_last['可转债代码'] = df_all_last['可转债代码'].astype(str)
for index, item in df_all_last.iterrows():
last_map[item['可转债代码']] = item.to_dict()
filename = f'stdevry_{date}.json'
# filename = f'stdevry.json'
file_dir = os.getcwd() + f'/out/stdevry/'
code_stdevry_map = dict()
if not os.path.exists(file_dir + filename):
filename = f'stdevry.json'
with open(file_dir + filename) as json_file:
code_stdevry_map = json.load(json_file)
if os.path.exists(output_path):
if os.path.getsize(output_path) > 0:
isReadLocal = True
bs = get_bs_source(date, isReadLocal)
# print(bs)
rows = bs.find_all('tr')
list = []
worker = IdWorker()
for index in range(0, len(rows)):
row = rows[index]
try:
# print(row)
cb_id = row.get("data-id") # 获取属性值
cb_name = row.get("data-cb_name")
cb_code = row.get("data-cbcode")
stock_code = str(row.get("data-stock_code")[2:])
market = row.get("data-stock_code")[0:2]
stock_name = row.get("data-stock_name")
price = row.get("data-cb_price") # 可转债价格
rating = row.get("data-rating") # 债券评级
cb_percent = row.find_all('td', {'class': "cb_mov2_id"})[
0].get_text().strip()[0:-1] # 转债涨幅
cb_flags = row.find_all('td', {'class': "cb_name_id"})[
0].find_all('span') # 转债名称
is_repair_flag = False
repair_flag_remark = ''
is_ransom_flag = False
ransom_flag_remark = ''
pre_ransom_remark = ''
for flags in cb_flags:
flag_style = flags.get('style').replace(' ', '')
if flag_style == repair_flag_style:
is_repair_flag = True
repair_flag_remark = flags.get('title').strip()
if flag_style == repair_ransom_style:
is_ransom_flag = True
ransom_flag_remark = flags.get('title').strip()
if flag_style == pre_ransom_style:
pre_ransom_remark = flags.get('title').strip()
arbitrage_percent = row.find_all('td', {'class': "cb_mov2_id"})[
1].get_text().strip()[0:-1] # 日内套利
stock_price = row.find_all('td', {'class': "stock_price_id"})[
0].string.strip() # 股票价格
stock_percent = row.find_all('td', {'class': "cb_mov_id"})[
0].get_text().strip()[0:-1] # 股票涨跌幅
convert_stock_price = row.find_all('td', {'class': "cb_strike_id"})[
0].get_text().strip() # 转股价格
premium_rate = row.find_all('td', {'class': "cb_premium_id"})[
0].string.strip()[0:-1] # 转股溢价率
remain_price = row.find_all('td', {'class': "cb_price2_id"})[
1].string.strip() # 剩余本息
remain_price_tax = row.find_all('td', {'class': "cb_price2_id"})[
1]['title'].strip()[2:] # 税后剩余本息
is_unlist = row.get("data-unlist") # 是否上市
issue_date = None
if is_unlist == 'N':
issue_date = row.find(
'td', {'class': "bond_date_id"}).get_text().strip() # 发行日期
date_convert_distance = row.find_all('td', {'class': "cb_t_id"})[
0].string.strip() # 距离转股时间
date_remain_distance = row.find_all('td', {'class': "cb_t_id"})[
1].get_text().strip() # 剩余到期时间 待处理异常情况
date_remain_distance = date_remain_distance.translate(
str.maketrans("", "", string.whitespace))
date_return_distance = row.find_all('td', {'class': "cb_t_id"})[
2].get_text().strip() # 剩余回售时间 待处理异常情况
# item['距离回售时间'].translate(str.maketrans("", "", string.whitespace))
date_return_distance = date_return_distance.translate(
str.maketrans("", "", string.whitespace))
remain_amount = row.get("data-remain_amount") # 剩余规模
# remain_amount = row.find_all('td', {'class': "remain_amount"})[
# 0].get_text().strip() # 转债剩余余额
market_cap = row.find_all('td', {'class': "market_cap"})[
0].get_text().strip() # 股票市值
remain_to_cap = row.find_all('td', {'class': "cb_to_share"})[
0].get_text().strip()[0:-1] # 转债剩余/市值比例
pb_el = row.find_all('td', {'class': "cb_elasticity_id"})[
0]
pb = pb_el.get_text().strip() # P/B比例
cb_to_pb = re.findall(
r"(转股价格/每股净资产):(.+)", pb_el['title'].strip())[0]
# cb_to_pb = row.find_all('td', {'class': "cb_elasticity_id"})[
# 0].get_text().strip() # 转股价格/每股净资产
rate_expire = row.find_all('td', {'class': "cb_BT_id"})[
0].get_text().strip()[0:-1] # 到期收益率
rate_expire_aftertax = row.find_all('td', {'class': "cb_BT_id"})[
0].get('title').strip()[6:-1] # 税后到期收益率
rate_return = row.find_all('td', {'class': "cb_AT_id"})[
4].get_text().strip()[0:-1] # 回售收益率
old_style = row.find_all('td', {'class': "cb_wa_id"})[
0].get_text().strip() # 老式双底
new_style = row.find_all('td', {'class': "cb_wa_id"})[
1].get_text().strip() # 新式双底
# print("market", rate_expire, rate_return,
# stock_name, old_style, new_style, stock_percent, date_convert_distance, date_return_distance, date_remain_distance)
# fund_df = pd.DataFrame({'id': id_list, 'fund_code': code_list, 'morning_star_code': morning_star_code_list, 'fund_name': name_list, 'fund_cat': fund_cat,
# 'fund_rating_3': fund_rating_3, 'fund_rating_5': fund_rating_5, 'rate_of_return': rate_of_return})
item_stock = code_stdevry_map.get(stock_code)
item = {
'cb_code': cb_code,
'cb_name': cb_name,
'stock_code': stock_code,
'stock_name': stock_name,
'industry': item_stock.get('industry') if item_stock else '-',
'price': float(price),
'premium_rate': float(premium_rate),
'stock_stdevry': item_stock.get('stdevry') if item_stock else '-',
'cb_to_pb': float(cb_to_pb),
'date_remain_distance': date_remain_distance,
'date_return_distance': date_return_distance,
# 快到期或者强赎的情况为<-100
'rate_expire': -100 if '<-100' in rate_expire else (100 if ('>100' in rate_expire) else float(rate_expire)),
'rate_expire_aftertax': -100 if '<-100' in rate_expire_aftertax else (100 if ('>100' in rate_expire_aftertax) else float(rate_expire_aftertax)),
'remain_to_cap': float(remain_to_cap),
'is_repair_flag': str(is_repair_flag),
'repair_flag_remark': repair_flag_remark,
'pre_ransom_remark': pre_ransom_remark,
'is_ransom_flag': str(is_ransom_flag),
'ransom_flag_remark': ransom_flag_remark,
'remain_amount': float(remain_amount),
'market_cap': int(market_cap.replace(",", "")),
'last_price': None,
'last_cb_percent': None,
'cb_percent': float(cb_percent),
'stock_price': float(stock_price),
'stock_percent': float(stock_percent),
'last_stock_price': None,
'last_stock_percent': None,
'arbitrage_percent': float(arbitrage_percent),
'convert_stock_price': float(convert_stock_price),
'pb': float(pb),
'market': market,
'remain_price': float(remain_price),
'remain_price_tax': float(remain_price_tax),
'is_unlist': is_unlist,
'last_is_unlist': is_unlist if is_start else "Y",
'issue_date': date if issue_date == '今日上市' else issue_date,
'date_convert_distance': date_convert_distance,
'rate_return': rate_return,
'old_style': float(old_style.replace(",", "")),
'new_style': float(new_style.replace(",", "")),
'rating': rating,
'id': worker.get_id(),
'cb_id': cb_id,
}
last_record = last_map.get(cb_code)
if last_record:
item['last_price'] = last_record.get(rename_map.get('price'))
item['last_stock_price'] = last_record.get(
rename_map.get('stock_price'))
item['last_stock_percent'] = round((float(stock_price) - last_record.get(
rename_map.get('stock_price')))/last_record.get(rename_map.get('stock_price'))*100, 2)
item['last_cb_percent'] = round((float(price) - last_record.get(
rename_map.get('price')))/last_record.get(rename_map.get('price'))*100, 2)
item['last_is_unlist'] = last_record.get(
rename_map.get("is_unlist"))
if is_output and not is_save_database:
del item['id']
del item['cb_id']
if is_save_database:
delete_key_for_store(item)
list.append(item)
except Exception:
raise (Exception)
df = pd.DataFrame.from_records(list)
# 输出到excel
if is_output:
output_excel(df, sheet_name='All_ROW', date=date)
filter_data_dict = {}
for strategy in strategy_list:
strategy_name = strategy['name']
filter_key = strategy['filter_key']
filter_processor = getattr(filter, filter_key)
if filter_key == 'filter_multiple_factors':
filter_data = filter_processor(
df, date=date, multiple_factors_config=multiple_factors_config)
else:
filter_data = filter_processor(df)
output_excel(filter_data, sheet_name=strategy_name, date=date)
filter_data_dict[filter_key] = filter_data
if is_start:
print('success!!! data total: ', len(list))
return
all_df_rename = df.rename(columns=rename_map).reset_index()
percents = []
for strategy in strategy_list:
strategy_name = strategy['name']
head_count = strategy['head_count']
all_strategy_df = xls.parse(strategy['name'])
all_strategy_df['可转债代码'] = all_strategy_df['可转债代码'].astype(str)
strategy_df = all_strategy_df.head(
head_count) # 读取前20条
print(f"{strategy_name}'s len", len(strategy_df))
cur_percent = 0
cur_stocks_percent = 0
if len(strategy_df) > 0:
strategy_df = pd.merge(all_df_rename, strategy_df,
on=['可转债代码'], how='inner')
cur_percent = round(strategy_df["较上期涨跌幅_x"].mean().round(
2) * (len(strategy_df) / head_count), 2) # 乘以仓位
cur_stocks_percent = round(strategy_df["较上期股价涨跌幅_x"].mean().round(
2) * (len(strategy_df) / head_count), 2)
strategy['percent'] = cur_percent
strategy['stocks_percent'] = cur_stocks_percent
percents.append({
'name': f'{strategy_name}(距{compare_date})',
'total': len(all_strategy_df),
'head': len(strategy_df),
'percent': strategy['percent'],
'stocks_percent': strategy['stocks_percent'],
})
filename = summary_filename
file_dir = f'{out_dir}'
pathname = file_dir + filename
if not os.path.exists(pathname):
stats_data = dict()
else:
with open(pathname) as json_file:
stats_data = json.load(json_file)
last_period_percents = stats_data.get(
compare_date) if stats_data.get(compare_date) else []
for strategy in strategy_list:
last_accumulate_item = dict()
start = strategy['start']
for percent in last_period_percents:
if percent['name'] == f'累计{strategy["name"]}({start}至今)':
last_accumulate_item = percent
last_accumulate = last_accumulate_item.get(
'percent') if last_accumulate_item.get('percent') else 0
last_stocks_accumulate = last_accumulate_item.get(
'stocks_percent') if last_accumulate_item.get('stocks_percent') else 0
percents.append({
'name': f'累计{strategy["name"]}({start}至今)',
'percent': round(((last_accumulate / 100 + 1) * (1 + strategy.get('percent') / 100) - 1) * 100, 2),
'stocks_percent': round(((last_stocks_accumulate / 100 + 1) * (1 + strategy.get('stocks_percent') / 100) - 1) * 100, 2)
})
# last_accumulate_item = dict()
# for percent in last_period_percents:
# if percent['name'] == '累计涨跌幅(all)':
# last_accumulate_item = percent
# last_accumulate = last_accumulate_item.get(
# 'percent') if last_accumulate_item.get('percent') else 0
# percents.append({
# 'name': '累计涨跌幅(all)',
# 'percent': round(((last_accumulate / 100 + 1) * (1 + all_percent / 100) - 1) * 100, 2),
# })
stats_data[date] = percents
write_fund_json_data(stats_data, filename, file_dir)
output_excel(pd.DataFrame(percents), sheet_name="汇总", date=date)
if is_save_database:
# 入库
store_database(df)
print('success!!! data total: ', len(list))
def backtest():
htmlFiles = os.listdir('./html/')
dateList = []
for file in htmlFiles:
dateList.append(file[0:10])
sorted_dates = sorted(dateList)
prev_date = None
for idx, date in enumerate(sorted_dates):
cur_date = date
compare_date = prev_date if prev_date else sorted_dates[
0] if idx == 0 else sorted_dates[idx-1]
print(idx, cur_date, compare_date)
# last_path = f'{out_dir}{compare_date}_cb_list.xlsx'
# if idx != 0 and not os.path.exists(last_path):
# continue
is_save_database = False
is_output = True
impl(is_output, is_save_database, date=cur_date,
compare_date=compare_date)
prev_date = cur_date # 成功输出之后,更新prev_date
if __name__ == "__main__":
input_value = input("请输入下列序号执行操作:\n \
1.“输出到本地” \n \
2.“存到数据库” \n \
3.“回测” \n \
4.“可视化” \n \
5.“多因子策略回测” \n \
输入:")
date = datetime.now().strftime("%Y-%m-%d")
# date = "2023-04-21"
compare_date = "2023-05-06"
if input_value == '1':
is_save_database = False
is_output = True
impl(is_output, is_save_database, date=date,
compare_date=compare_date)
elif input_value == '2':
is_save_database = True
is_output = False
impl(is_output, is_save_database, date=date,
compare_date=compare_date)
elif input_value == '3':
backtest()
plot()
elif input_value == '4':
plot()
elif input_value == '5':
# file_dir = 'bond=0.7_stock=0.3_price=115_count=10_premium=25_premium_ratio=0.3_stdevry=30_max_price=130/'
file_dir = 'out/'
parent_dir = './'
impl_multiple_factors(file_dir=file_dir, parent_dir=parent_dir)