-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinotify_to_mqtt_client.py
99 lines (73 loc) · 2.68 KB
/
inotify_to_mqtt_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json
import time
import os
from dataclasses import dataclass
from datetime import datetime
import cv2
import numpy as np
import paho.mqtt.client as mqtt
from inotify_simple import flags
from lib.denoise import denoise
from lib.contour import find_contours
from lib.pixel_mass import get_pixel_mass
from lib.watcher import DirWatcher
from lib.model import Model
@dataclass
class Config:
publish_topic: str = 'test'
camera_name: str = 'testcam'
raw_file: str = './raw_results.txt'
watch_directory: str = './images'
model_file_path: str = './model.json'
mosquitto_broker: str = "127.0.0.1"
mosquitto_port: int = 1883
def process_image(model: Model, mqtt_client: mqtt.Client, config: Config, image_file: str):
timestamp = int(time.time())
print(f'new image taken: {image_file} at {datetime.fromtimestamp(timestamp).isoformat()}')
original_image = cv2.imread(image_file)
denoised_mask = denoise(
original_image,
lower_color=np.array([model.lower_color]),
upper_color=np.array([model.upper_color]),
blur_kernel=model.blur_kernel,
dilate_kernel=model.dilate_kernel,
denoise_temp_size=model.denoise_temp_size,
denoise_window_size=model.denoise_window_size,
denoise_strength=model.denoise_strength
)
contours = find_contours(denoised_mask, bbox_min_area=model.bbox_min_area)
for index, contour in enumerate(contours):
mass = get_pixel_mass(denoised_mask, contour['contour'])
packet = {
'image': image_file,
'timestamp': timestamp,
'camera': config.camera_name,
'instance': index,
'mass': mass
}
mqtt_client.publish(config.publish_topic, json.dump(packet))
raw = {
**packet,
'contour': contour['contour'].tolist(),
'bbox': contour['bbox'],
}
with open(config.raw_file, 'a') as f:
f.write(json.dumps(raw) + '\n')
if __name__ == "__main__":
config = Config()
mqtt_client = mqtt.Client()
mqtt_client.connect(config.mosquitto_broker, config.mosquitto_port, 60)
mqtt_client.loop_start()
model = Model()
model.load(config.model_file_path)
model.save(config.model_file_path)
try:
with DirWatcher(config.watch_directory, flags.CLOSE_WRITE) as watcher:
for event in watcher.next(timeout=2):
image_file = os.path.join(config.watch_directory, event.name)
if os.path.exists(image_file):
process_image(model, mqtt_client, config, image_file)
except:
pass
mqtt_client.loop_stop()
mqtt_client.disconnect()