-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_R101.py
268 lines (201 loc) · 9.57 KB
/
train_R101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import time
import torchvision.utils as vutils
from lib.loss.acw_loss import *
from tensorboardX import SummaryWriter
from torch import optim
from torch.backends import cudnn
from torch.utils.data import DataLoader
from config.configs_kf import *
from lib.utils.lookahead import *
from lib.utils.lr import init_params_lr
from lib.utils.measure import *
from lib.utils.visual import *
from lib.utils.model_summary import get_model_summary
from tools.model import load_model
cudnn.benchmark = True
prepare_gt(VAL_ROOT)
prepare_gt(TRAIN_ROOT)
train_args = agriculture_configs(net_name='MSCG-Rx101',
data='Agriculture',
bands_list=['NIR', 'RGB'],
kf=0, k_folder=0,
note='reproduce'
)
train_args.input_size = [512, 512]
train_args.scale_rate = 1. # 256./512. # 448.0/512.0 #1.0/1.0
train_args.val_size = [512, 512]
train_args.node_size = (32, 32)
train_args.train_batch = 14
train_args.val_batch = 14
train_args.lr = 2.18e-4/np.sqrt(3)
# train_args.weight_decay = 2e-5
# train_args.lr = 1e-5
train_args.weight_decay = 1e-5
train_args.lr_decay = 0.9
train_args.max_iter = 1e8
train_args.snapshot = ''
train_args.print_freq = 100
train_args.save_pred = False
# output training configuration to a text file
train_args.write2txt()
writer = SummaryWriter(os.path.join(train_args.save_path, 'tblog'))
visualize, restore = get_visualize(train_args)
# Remember to use num_workers=0 when creating the DataBunch.
def random_seed(seed_value, use_cuda=True):
np.random.seed(seed_value) # cpu vars
torch.manual_seed(seed_value) # cpu vars
random.seed(seed_value) # Python
if use_cuda:
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value) # gpu vars
torch.backends.cudnn.deterministic = True # needed
torch.backends.cudnn.benchmark = False
def main():
random_seed(train_args.seeds)
train_args.write2txt()
net = load_model(name=train_args.model, classes=train_args.nb_classes,
node_size=train_args.node_size)
# train_args.snapshot = 'epoch_20_loss_1.09793_acc_0.78908_acc-cls_0.61996_mean-iu_0.47694_fwavacc_0.65960_f1_0.63160_lr_0.0000946918.pth'
net, start_epoch = train_args.resume_train(net)
print(net.count_parameters())
net.cuda()
# Run the model parallelly
if torch.cuda.device_count() > 1:
print("Using {} GPUs".format(torch.cuda.device_count()))
net = nn.DataParallel(net)
net.train()
train_set, val_set = train_args.get_dataset()
train_loader = DataLoader(dataset=train_set, batch_size=train_args.train_batch, num_workers=8, shuffle=True)
val_loader = DataLoader(dataset=val_set, batch_size=train_args.val_batch, num_workers=8)
criterion = ACW_loss().cuda()
params = init_params_lr(net, train_args)
# first train with Adam for around 10 epoch, then manually change to SGD
# to continue the rest train, Note: need resume train from the saved snapshot
base_optimizer = optim.Adam(params, amsgrad=True)
# base_optimizer = optim.SGD(params, momentum=train_args.momentum, nesterov=True)
optimizer = Lookahead(base_optimizer, k=6)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 60, 1.18e-6)
new_ep = 0
while True:
starttime = time.time()
train_main_loss = AverageMeter()
aux_train_loss = AverageMeter()
cls_trian_loss = AverageMeter()
start_lr = train_args.lr
train_args.lr = optimizer.param_groups[0]['lr']
num_iter = len(train_loader)
curr_iter = ((start_epoch + new_ep) - 1) * num_iter
print('---curr_iter: {}, num_iter per epoch: {}---'.format(curr_iter, num_iter))
for i, (inputs, labels) in enumerate(train_loader):
sys.stdout.flush()
inputs, labels = inputs.cuda(), labels.cuda(),
N = inputs.size(0) * inputs.size(2) * inputs.size(3)
optimizer.zero_grad()
outputs, cost = net(inputs)
main_loss = criterion(outputs, labels)
# print(cost)
cost = cost.mean()
# print(cost)
loss = main_loss + cost
loss.backward()
optimizer.step()
lr_scheduler.step(epoch=(start_epoch + new_ep))
train_main_loss.update(main_loss.item(), N)
aux_train_loss.update(cost.item(), inputs.size(0))
curr_iter += 1
writer.add_scalar('main_loss', train_main_loss.avg, curr_iter)
writer.add_scalar('aux_loss', aux_train_loss.avg, curr_iter)
# writer.add_scalar('cls_loss', cls_trian_loss.avg, curr_iter)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], curr_iter)
if (i + 1) % train_args.print_freq == 0:
newtime = time.time()
print('[epoch %d], [iter %d / %d], [loss %.5f, aux %.5f, cls %.5f], [lr %.10f], [time %.3f]' %
(start_epoch + new_ep, i + 1, num_iter, train_main_loss.avg, aux_train_loss.avg,
cls_trian_loss.avg,
optimizer.param_groups[0]['lr'], newtime - starttime))
starttime = newtime
validate(net, val_set, val_loader, criterion, optimizer, start_epoch + new_ep, new_ep)
new_ep += 1
def validate(net, val_set, val_loader, criterion, optimizer, epoch, new_ep):
net.eval()
val_loss = AverageMeter()
inputs_all, gts_all, predictions_all = [], [], []
with torch.no_grad():
for vi, (inputs, gts) in enumerate(val_loader):
inputs, gts = inputs.cuda(), gts.cuda()
N = inputs.size(0) * inputs.size(2) * inputs.size(3)
outputs = net(inputs)
val_loss.update(criterion(outputs, gts).item(), N)
# val_loss.update(criterion(gts, outputs).item(), N)
if random.random() > train_args.save_rate:
inputs_all.append(None)
else:
inputs_all.append(inputs.data.squeeze(0).cpu())
gts_all.append(gts.data.squeeze(0).cpu().numpy())
predictions = outputs.data.max(1)[1].squeeze(1).squeeze(0).cpu().numpy()
predictions_all.append(predictions)
update_ckpt(net, optimizer, epoch, new_ep, val_loss,
inputs_all, gts_all, predictions_all)
net.train()
return val_loss, inputs_all, gts_all, predictions_all
def update_ckpt(net, optimizer, epoch, new_ep, val_loss,
inputs_all, gts_all, predictions_all):
avg_loss = val_loss.avg
acc, acc_cls, mean_iu, fwavacc, f1 = evaluate(predictions_all, gts_all, train_args.nb_classes)
writer.add_scalar('val_loss', avg_loss, epoch)
writer.add_scalar('acc', acc, epoch)
writer.add_scalar('acc_cls', acc_cls, epoch)
writer.add_scalar('mean_iu', mean_iu, epoch)
writer.add_scalar('fwavacc', fwavacc, epoch)
writer.add_scalar('f1_score', f1, epoch)
updated = train_args.update_best_record(epoch, avg_loss, acc, acc_cls, mean_iu, fwavacc, f1)
# save best record and snapshot prameters
val_visual = []
snapshot_name = 'epoch_%d_loss_%.5f_acc_%.5f_acc-cls_%.5f_mean-iu_%.5f_fwavacc_%.5f_f1_%.5f_lr_%.10f' % (
epoch, avg_loss, acc, acc_cls, mean_iu, fwavacc, f1, optimizer.param_groups[0]['lr']
)
if updated or (train_args.best_record['val_loss'] > avg_loss):
torch.save(net.state_dict(), os.path.join(train_args.save_path, snapshot_name + '.pth'))
# train_args.update_best_record(epoch, val_loss.avg, acc, acc_cls, mean_iu, fwavacc, f1)
if train_args.save_pred:
if updated or (new_ep % 5 == 0):
val_visual = visual_ckpt(epoch, new_ep, inputs_all, gts_all, predictions_all)
if len(val_visual) > 0:
val_visual = torch.stack(val_visual, 0)
val_visual = vutils.make_grid(val_visual, nrow=3, padding=5)
writer.add_image(snapshot_name, val_visual)
def visual_ckpt(epoch, new_ep, inputs_all, gts_all, predictions_all):
val_visual = []
if train_args.save_pred:
to_save_dir = os.path.join(train_args.save_path, str(epoch) + '_' + str(new_ep))
check_mkdir(to_save_dir)
for idx, data in enumerate(zip(inputs_all, gts_all, predictions_all)):
if data[0] is None:
continue
if train_args.val_batch == 1:
input_pil = restore(data[0][0:3, :, :])
gt_pil = colorize_mask(data[1], train_args.palette)
predictions_pil = colorize_mask(data[2], train_args.palette)
else:
input_pil = restore(data[0][0][0:3, :, :]) # only for the first 3 bands
# input_pil = restore(data[0][0])
gt_pil = colorize_mask(data[1][0], train_args.palette)
predictions_pil = colorize_mask(data[2][0], train_args.palette)
# if train_args['val_save_to_img_file']:
if train_args.save_pred:
input_pil.save(os.path.join(to_save_dir, '%d_input.png' % idx))
predictions_pil.save(os.path.join(to_save_dir, '%d_prediction.png' % idx))
gt_pil.save(os.path.join(to_save_dir, '%d_gt.png' % idx))
val_visual.extend([visualize(input_pil.convert('RGB')), visualize(gt_pil.convert('RGB')),
visualize(predictions_pil.convert('RGB'))])
return val_visual
def check_mkdir(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
if __name__ == '__main__':
main()