-
Notifications
You must be signed in to change notification settings - Fork 0
/
Step1_dual_EEG_preprocessing.asv
448 lines (413 loc) · 18.8 KB
/
Step1_dual_EEG_preprocessing.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
%% Exoskeleton Adapatation Pre-processing
%
% Author: Noelle Jacobsen, University of Florida
% Created 9/8/23, last updated
%
% Inputs:
%
%
% Ouputs:
%
%
% elecLocPath folder path containing all subject .txt
% files with digitized electrode locations
% codeRepo Code repository path
%% initialize paths
%set global variables
global mydir Exo_Gait_Events
mydir = 'R:\Ferris-Lab\jacobsen.noelle\Exo Adaptation';
eeglabpath = 'C:\Users\jacobsen.noelle\Desktop\eeglab2022.0';
codeRepo = 'R:\Ferris-Lab\jacobsen.noelle\Matlab_Scripts\ExoAdapt-EEG-Processing\';
eleclocsFolder = [mydir,'\Data\raw_data\electrode_locations'];
EEGinputFolder= [mydir,'\Data\processed_data\BATCH-07-Mar-2023-Step1a'];
addpath(genpath(codeRepo))
savePath = [mydir,'\Data\processed_data']; %subfolders will be created and added
%load Exo_Gait_Events table
% [ADD]
rawdatafolderList = dir([mydir,'\Data\raw_data']);
% outputFolder_trim= strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1d-Trim');
% if ~exist(outputFolder_trim, 'dir') %check to see if output folder exists, if not make new one
% mkdir(outputFolder_trim);
% end
%
%
% cd(savePath)
% FILTERSPEC = '*.set';
% TITLE = 'Load EEG dataset';
% [ EEGfileList,EEGinputFolder] = uigetfile(FILTERSPEC, TITLE,'MultiSelect', 'on');
% if iscell(EEGfileList) %array of chars
% numfiles = length(EEGfileList);
% else
% numfiles = size(EEGfileList,1);
% end
% %% Condition level processing
% clc;close all
% fin = []; count = 0;
% if ~exist('badsets','var')
% badsets ={};
% end
% cd(savePath)
% diary([date,'-diary'])
% diary on
% fprintf('================================================================\n')
% fprintf('Step1_dual_EEG_preprocessing\n%s\n', date);
% fprintf('================================================================\n')
%
% for filei = 1:numfiles
% mytic = tic;
% cd(EEGinputFolder)
% %file name depends on format of fileList
% if iscell(EEGfileList) %array of chars
% EEGfile = EEGfileList {filei};
% elseif ischar(EEGfileList) %one char
% EEGfile = EEGfileList;
% elseif isstruct(EEGfileList)
% EEGfile = EEGfileList(filei).name;
% else
% disp('Error in file type selected');
% end
% % try
% fprintf('\n\n%s',EEGfile)
% fprintf('\n================================================================\n')
% %% Load EEG dataset
% if ~exist('ALLCOM')
% addpath(eeglabpath)
% [ALLEEG EEG CURRENTSET ALLCOM] = eeglab; %start EEGlab
% end
% EEG = pop_loadset('filename',EEGfile,'filepath',EEGinputFolder);
% %add subject number
% if isempty(EEG.subject)
% subject= extractBefore(EEGfile,'_');
% EEG.subject = subject;
% end
%
% %subject folder
% subFolder = fullfile(rawdatafolderList(1).folder,rawdatafolderList(contains({rawdatafolderList.name},EEG.subject) & [rawdatafolderList.isdir]==1).name);
% %% 1b) Add channel locations
% if isempty(EEG.chanlocs(1).theta)
% fprintf('File does not have channel locations, attempting to load locations...');
% outputFolder= strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1b-Add_chanlocs');
% if ~exist(outputFolder, 'dir') %check to see if output folder exists, if not make new one
% mkdir(outputFolder);
% end
% EEG = add_chanlocs(EEG,eleclocsFolder);
% [ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
% EEG = eeg_checkset( EEG );
% EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'.set'),'_chanlocs.set'),'filepath',outputFolder);
% end
%
% %% 1c) Import gait events and other data channels
% gaitdataFolder = [mydir,'\Data\processed_data\gait_data']; %folder containing gait data for each subject and condition
% if isempty([EEG.event(strcmpi({EEG.event.type},'RHS'))])
% outputFolder_gaitdat = strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1c-Import_gait_data');
% if ~exist(outputFolder_gaitdat, 'dir') %check to see if output folder exists, if not make new one
% mkdir(outputFolder_gaitdat);
% end
% syncB_Folder = [subFolder,'\Motive']; %folder containing system b .csv with sync signal, exported from Motive
% newfilename = EEG.filename; %gait events .mat files were stored w/o '_chanlocs'
% EEG.filename = [extractBefore(EEG.filename,'_chanlocs'),'.set'];
% EEG = import_gaitdata(EEG,syncB_Folder, gaitdataFolder);
% [ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
% EEG.filename = newfilename;
% EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'.set'),'_gaitdat.set'),'filepath',outputFolder_gaitdat);
% end
% % %% 1d) Attenuate motion and muscle artifacts with iCanClean
% % opt.testname= 'EEGExo';
% % opt.iCCmethod =3;
% % opt.calc_psd= 1; %calculate PSD for input data
% % opt.visualizeFinalResults =1;
% % opt.removeChannels; %remove bad emg and eeg channels-- turn off if you haven't merged datasets yet.
% % cleanEEG = run_iCanClean(EEG,ALLEEG,CURRENTSET,outputFolder_iCC, opt);
% % [ALLEEG, EEG] = eeg_store(ALLEEG, cleanEEG, CURRENTSET);
% % EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'.set'),'_iCC.set'),'filepath',outputFolder_iCC);
%
%% 1e) Crop data using gait events (gait data was already cropped to when
% exo when recording, so gait events only occured then
% add trigger as channel
% EEG.data(end+1,:) = EEG.trigger;
% EEG.chanlocs(end+1).labels = 'Sync';
% EEG.chanlocs(end).type = 'Sync';
% EEG.nbchan = size(EEG.data,1);
%
% fprintf('\nCropping data to first and last RHS event')
% RHS = [EEG.event(strcmpi({EEG.event.type},'RHS')).latency];
% buffer = 5*EEG.srate; %5 second buffer before and after for time-freq analysis so no weird things happen at the edges
% rejwin = [2 RHS(1)+buffer; RHS(end)+buffer EEG.pnts];
% EEG = eeg_eegrej_2023( EEG, rejwin);
% RHS = [EEG.event(strcmpi({EEG.event.type},'RHS')).latency];
% plot_gaitevents(EEG,'time') %double check events because of event latency warning from eeg_eegrej
% savethisfig(gcf,[EEG.subject,'_', EEG.condition,'_cropped'],[gaitdataFolder,'\gaitevents'],'fig');
% if strcmp(EEG.condition,'pow_1')
% xlim([EEG.times(1) EEG.times(10000)]/1000)
% else
% xlim([(RHS(end)/EEG.srate)-15 RHS(end)/EEG.srate])
% end
% savethisfig(gcf,[EEG.subject,'_', EEG.condition],[gaitdataFolder,'\gaitevents'],'jpg');
% close;
% [ALLEEG, EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
% EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'.set'),'_trim.set'),'filepath',outputFolder_trim);
%
%
% % %or crop manually
% % ogEEG =EEG;
% % EEG.data(end+1,:) = EEG.trigger;
% % EEG.chanlocs(end+1).labels = 'Sync';
% % EEG.nbchan = size(EEG.data,1);
% % pop_eegplot(EEG)
%
% % fprintf('\n\niCanClean Parameters:\n');
% % paramList = fields(cleanEEG.iCanClean.params);
% % for p = 1:length(paramList)
% % fprintf(notes,'\t-%s = %i\n',paramList{p},cleanEEG.iCanClean.params.(paramList{p}));
% % end
%
% %
% % catch ME
% % fprintf('Skipping this subject due to issues: ')
% % fprintf('%s\n',ME.identifier)
% % badsets{end+1} = EEGfile;
% % end
%
% %estimate time remaining
% fprintf('\nFinished file %i/%i\n', filei,numfiles);
% t_remaining(mytic,fin,count,numfiles)
% clear cursor_info
% close all;
% end
%
% completedfiles = dir(fullfile(outputFolder_trim,'*.set'));
% badseti= []; badsets ={};
% %other way to check for badsets
% for filei = 1:numfiles
% filename = extractBefore(EEGfileList{filei},'.set');
% if ~any(contains({completedfiles.name},filename))
% badsets{end+1} = filename;
% badseti = [badseti;filei];
% end
% end
%
% if ~isempty(badsets)
% fprintf('\nThese datasets were skipped:')
% arrayfun(@(x) fprintf('%s\n',x{1,1}),badsets);
% end
% diary off
%% Subject level processing
inputFolder = outputFolder_trim;
outputFolder_merge = strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1e-Merged');
outputFolder_iCC = strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1f-iCanClean');
outputFolder_clean= strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1g-Fully_Preprocessed');
if ~exist(outputFolder_iCC, 'dir') %check to see if output folder exists, if not make new one
mkdir(outputFolder_iCC);
end
if ~exist(outputFolder_merge, 'dir') %check to see if output folder exists, if not make new one
mkdir(outputFolder_merge)
end
if ~exist(outputFolder_clean, 'dir') %check to see if output folder exists, if not make new one
mkdir(outputFolder_clean)
end
% Get file related to each subject
subList = {};
badsubs ={};
EEGfileList = dir(fullfile(inputFolder,'*.set'));
for filei = 1:size(EEGfileList,1)
subList{filei} = extractBefore(EEGfileList(filei).name,'_');
end
subList = unique(subList);
%%
cd(savePath)
diary 'preprocessing'
fprintf('================================================================\n')
fprintf('\t\tStep1_dual_EEG_preprocessing (steps e-f)\n\t\t%s\n', date);
fprintf('================================================================\n\n')
count = 0; fin = []; jobList ={};
for subi = 14%12:length(subList)
try
try
fprintf('\n================================================================\n')
fprintf('%s\n',subList{subi});
fprintf('================================================================\n')
subFiles = {EEGfileList(contains({EEGfileList.name},subList{subi})).name};
%order conditions
files_noexo = sort(subFiles(contains(subFiles,'noExo')));
files_unpow = sort(subFiles(contains(subFiles,'unpow')));
files_pow = sort(subFiles(contains(subFiles,'pow')& ~contains(subFiles,'un')));
files_deadapt = sort(subFiles(contains(subFiles,'deadapt')));
if isempty(files_noexo) || isempty(files_unpow) || isempty(files_pow) || isempty(files_deadapt)
disp(newline)
warning(['Skipping this subject (',subList{subi},') because they are missing conditions!!']); %warn user
disp(newline)
badsubs{end+1} = subList{subi};
continue
end
subFiles =[files_noexo, files_unpow,files_pow,files_deadapt];
numfiles = size(subFiles,2);
eeglab;
for filei = 1:numfiles
%Load datasets
fileName = subFiles{filei};
EEG = pop_loadset('filename',fileName,'filepath',inputFolder);
[ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 ); %append to new EEG to ALLEEG
EEG.etc.iCanClean = []; %TMP
EEG.urevent = [];
[ALLEEG, EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
EEG = pop_saveset( EEG, 'savemode','resave','filename',EEG.filename,'filepath',EEG.filepath);
%rejch(:,filei) = EEG.reject.rejch;%channel rejection mask, 0=keep, 1=reject
end
%% 1e) Merge files
fprintf('Merging files in this order:')
arrayfun(@(x) fprintf('%s\n',x{1,1}),subFiles);
EEG = pop_mergeset( ALLEEG,1:numfiles, 0);
EEG = eeg_checkset(EEG);
[ALLEEG, EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
EEG = pop_saveset( EEG, 'filename',strcat(EEG.subject,'_allcond.set'),'filepath',outputFolder_merge);
% rejch = sum(rejch,2); %reject a channel if it was rejected in any condition file
% rejch = find(rejch>=1);
% if ~isempty(rejch)
% EEG = pop_select(EG,'nochannel',sort(unique(rejch))); %remove bad channels from data before rereference so only rereferencing once
% end
%% 1f) Attenuate motion and muscle artifacts with iCanClean
opt.testname= 'EEGExo';
opt.iCCmethod =3; %3 cycles
opt.calc_psd= 1; %calculate PSD for input data
opt.visualizeFinalResults =1;
opt.removeChannels = 1; %remove bad emg and eeg channels-- turn off if you haven't merged datasets yet.
cleanEEG = run_iCanClean(EEG,ALLEEG,CURRENTSET,outputFolder_iCC, opt);
cleanEEG = eeg_checkset(cleanEEG);
[ALLEEG, EEG] = eeg_store(ALLEEG, cleanEEG, CURRENTSET);
EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'.set'),'_iCC.set'),'filepath',outputFolder_iCC);
%% 1g) Additional pre-processing
% clean line noise,rereference, channel and time window rejection
cleanline_flag =1; %cleanline noise ON/OFF
check_chan_std_flag =1; %check standard deviation of all channels and store figure
useGPU = 0;
EEG = cleanEEG_func(EEG,outputFolder_clean,cleanline_flag, check_chan_std_flag,useGPU,eleclocsFolder);
EEG = eeg_checkset(EEG);
[ALLEEG, EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'_iCC.set'),'_clean.set'),'filepath',outputFolder_clean);
%% 1g) Prepare AMICA for Hipergator
%parameters
params = [];
params.num_time = '00:45:00'; % Wall time hh:mm:ss
params.pcaOverride =0 ; % override # of components to reduce using PC
params.max_iter = 2000;
params.channels = 'EEG';
mainAMICAdir = '\\exasmb.rc.ufl.edu\blue\dferris\jacobsen.noelle';
outputdir_unix = '/blue/dferris/jacobsen.noelle/AMICA/';
prepare_HPG_AMICA_func(EEG,extractBefore(EEG.filename,'.set'),...
mainAMICAdir,outputdir_unix,...
params,'[email protected]')
subDirNum = date;
shortfileName = EEG.subject;
AMICAdir_unix =[outputdir_unix,subDirNum,'/',shortfileName,'/'];
jobList{end+1} = ['cd ' AMICAdir_unix];
jobList{end+1} = 'sbatch runAMICA_hipergator.sh';
catch ME
fprintf('Skipping this subject due to issues: ')
fprintf('%s\n',ME.identifier)
badsubs{end+1} = subList{subi};
end
%estimate time remaining
fprintf('\nFinished file %i/%i\n', subi,length(subList));
t_remaining(mytic,fin,count,length(subList))
close all;
catch
pause(60)
end
end
if ~isempty(badsubs)
fprintf('\nThese subjects were skipped:')
arrayfun(@(x) fprintf('%s\n',x{1,1}),badsubs);
end
diary off
fprintf('\nJob List:\n')
arrayfun(@(x) fprintf('\t%s\n',x{1,1}),jobList);
disp('Done creating AMICA stuff');
% setpref('Internet','E_mail','[email protected]');
% sendmail('[email protected]','Calculation complete.')
%=====================================================================
% for subjects that were halfway done...
%=====================================================================
%% just steps after merge
inputFolder = 'R:\Ferris-Lab\jacobsen.noelle\Exo Adaptation\Data\processed_data\2023-09-20_Step1f-iCanClean';
inputFolder = 'R:\Ferris-Lab\jacobsen.noelle\Exo Adaptation\Data\processed_data\2023-09-21_Step1g-Fully_Preprocessed';
outputFolder_iCC = strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1f-iCanClean');
outputFolder_clean= strcat(savePath,'\\',datestr(now, 'yyyy-mm-dd'),'_Step1g-Fully_Preprocessed');
if ~exist(outputFolder_iCC, 'dir') %check to see if output folder exists, if not make new one
mkdir(outputFolder_iCC);
end
if ~exist(outputFolder_clean, 'dir') %check to see if output folder exists, if not make new one
mkdir(outputFolder_clean)
end
cd(inputFolder)
FILTERSPEC = '*.set';
TITLE = 'Load EEG dataset';
[ EEGfileList,EEGinputFolder] = uigetfile(FILTERSPEC, TITLE,'MultiSelect', 'on');
if iscell(EEGfileList) %array of chars
numfiles = length(EEGfileList);
else
numfiles = size(EEGfileList,1);
end
%EEGfileList = dir(fullfile(inputFolder,'*.set'));
if ~exist('ALLCOM')
addpath(eeglabpath)
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; %start EEGlab
end
jobList = {};
%%
for filei =1:numfiles
%file name depends on format of fileList
if iscell(EEGfileList) %array of chars
EEGfile = EEGfileList {filei};
elseif ischar(EEGfileList) %one char
EEGfile = EEGfileList;
elseif isstruct(EEGfileList)
EEGfile = EEGfileList(filei).name;
else
disp('Error in file type selected');
end
EEG = pop_loadset('filename',EEGfile,'filepath',EEGinputFolder);
ALLEEG = EEG; CURRENTSET =1;
%% 1f) Attenuate motion and muscle artifacts with iCanClean
if ~contains(EEG.filename,'iCC') && ~contains(EEG.filename,'clean')
opt.testname= 'EEGExo';
opt.iCCmethod =3; %3 cycles
opt.calc_psd= 1; %calculate PSD for input data
opt.visualizeFinalResults =1;
opt.removeChannels = 1; %remove bad emg and eeg channels-- turn off if you haven't merged datasets yet.
cleanEEG = run_iCanClean(EEG,ALLEEG,CURRENTSET,outputFolder_iCC, opt);
cleanEEG = eeg_checkset(cleanEEG);
[ALLEEG, EEG] = eeg_store(ALLEEG, cleanEEG, CURRENTSET);
EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'.set'),'_iCC.set'),'filepath',outputFolder_iCC);
end
%% 1g) Additional pre-processing
% clean line noise,rereference, channel and time window rejection
if ~contains(EEG.filename,'clean')
cleanline_flag =1; %cleanline noise ON/OFF
check_chan_std_flag =1; %check standard deviation of all channels and store figure
useGPU = 0;
EEG = cleanEEG_func(EEG,outputFolder_clean,cleanline_flag, check_chan_std_flag,useGPU,eleclocsFolder);
EEG = eeg_checkset(EEG);
[ALLEEG, EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
EEG = pop_saveset( EEG, 'filename',strcat(extractBefore(EEG.filename,'_iCC.set'),'_clean.set'),'filepath',outputFolder_clean);
end
%% 1g) Prepare AMICA for Hipergator
%parameters
params = [];
params.num_time = '00:45:00'; % Wall time hh:mm:ss
params.pcaOverride =0 ; %PCA value to use
params.max_iter = 2000;
params.channels = 'EEG';
mainAMICAdir = '\\exasmb.rc.ufl.edu\blue\dferris\jacobsen.noelle';
outputdir_unix = '/blue/dferris/jacobsen.noelle/AMICA/';
prepare_HPG_AMICA_func(EEG,extractBefore(EEG.filename,'.set'),...
mainAMICAdir,outputdir_unix,...
params,'[email protected]')
subDirNum = date;
shortfileName = EEG.subject;
AMICAdir_unix =[outputdir_unix,subDirNum,'/',shortfileName,'/'];
jobList{end+1} = ['cd ' AMICAdir_unix];
jobList{end+1} = 'sbatch runAMICA_hipergator.sh';
end
fprintf('\nJob List:\n')
arrayfun(@(x) fprintf('\t%s\n',x{1,1}),jobList);
disp('Done creating AMICA stuff');