forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ConvUtils.h
405 lines (354 loc) · 17.6 KB
/
ConvUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/TensorUtils.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/native/DispatchStub.h>
#include <c10/util/env.h>
#include <c10/util/irange.h>
namespace at { namespace native {
using conv_depthwise2d_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 2>);
DECLARE_DISPATCH(conv_depthwise2d_backward_fn, conv_depthwise2d_backward_stub);
using conv_depthwise3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(conv_depthwise3d_backward_fn, conv_depthwise3d_backward_stub);
using cudnn_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, bool, std::array<bool,2>);
DECLARE_DISPATCH(cudnn_convolution_backward_fn, cudnn_convolution_backward_stub);
using mps_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mps_convolution_backward_fn, mps_convolution_backward_stub);
using cudnn_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, bool, bool, bool, std::array<bool,2>);
DECLARE_DISPATCH(cudnn_convolution_transpose_backward_fn, cudnn_convolution_transpose_backward_stub);
using miopen_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_convolution_backward_fn, miopen_convolution_backward_stub);
using miopen_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_convolution_transpose_backward_fn, miopen_convolution_transpose_backward_stub);
using miopen_depthwise_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_depthwise_convolution_backward_fn, miopen_depthwise_convolution_backward_stub);
using mkldnn_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mkldnn_convolution_backward_fn, mkldnn_convolution_backward_stub);
using mkldnn_convolution_transpose_fn = Tensor(*)(const Tensor&, const Tensor&, const c10::optional<Tensor>&,
IntArrayRef, IntArrayRef, IntArrayRef, IntArrayRef, int64_t);
DECLARE_DISPATCH(mkldnn_convolution_transpose_fn, mkldnn_convolution_transpose_stub);
using mkldnn_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mkldnn_convolution_transpose_backward_fn, mkldnn_convolution_transpose_backward_stub);
using slow_conv_dilated2d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(slow_conv_dilated2d_backward_fn, slow_conv_dilated2d_backward_stub);
using slow_conv_dilated3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(slow_conv_dilated3d_backward_fn, slow_conv_dilated3d_backward_stub);
using slow_conv_transpose2d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, std::array<bool,3>);
DECLARE_DISPATCH(slow_conv_transpose2d_backward_fn, slow_conv_transpose2d_backward_stub);
using slow_conv_transpose3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, std::array<bool,3>);
DECLARE_DISPATCH(slow_conv_transpose3d_backward_fn, slow_conv_transpose3d_backward_stub);
namespace {
static bool cudnnv8_heuristic_mode_b = c10::utils::check_env("TORCH_CUDNN_USE_HEURISTIC_MODE_B") == true;
}
static inline bool cudnnv8_enabled_check_debug() {
static bool cudnnv8_flag = c10::utils::check_env("TORCH_CUDNN_V8_API_DISABLED") != true;
static bool cudnnv8_debug = c10::utils::check_env("TORCH_CUDNN_V8_API_DEBUG") == true;
static uint8_t cudnnv8_debugcount = 0;
if (cudnnv8_debug == 1 && cudnnv8_debugcount < 10) {
TORCH_WARN("TORCH_CUDNN_V8_DEBUG ON, V8 ON: ", cudnnv8_flag, " TORCH_CUDNN_USE_HEURISTIC_MODE B: ", cudnnv8_heuristic_mode_b);
cudnnv8_debugcount++;
}
return cudnnv8_flag == 1;
}
static inline bool cudnnv8_use_heur_mode_b() {
return cudnnv8_heuristic_mode_b;
}
// Keep in sync with py::enum_ in Module.cpp
enum class ConvBackend {
CudaDepthwise2d,
CudaDepthwise3d,
Cudnn,
CudnnTranspose,
Empty,
Miopen,
MiopenDepthwise,
MiopenTranspose,
Mkldnn,
MkldnnTranspose,
MkldnnEmpty,
NnpackSpatial,
Overrideable,
Slow2d,
Slow3d,
SlowDilated2d,
SlowDilated3d,
SlowTranspose2d,
SlowTranspose3d,
Winograd3x3Depthwise,
Xnnpack2d,
Mps,
MpsTranspose,
};
// Overload for selecting the convolution backend from the full set of convolution inputs.
// This overload is exposed to python for testing, etc.
TORCH_API ConvBackend select_conv_backend(
const Tensor& input, const Tensor& weight, const c10::optional<Tensor>& bias_opt,
IntArrayRef stride, SymIntArrayRef padding, IntArrayRef dilation,
bool transposed, SymIntArrayRef output_padding, int64_t groups, const at::OptionalSymIntArrayRef bias_sizes_opt);
TORCH_API at::MemoryFormat _determine_backend_memory_format(const Tensor& input,
const Tensor& weight,
const ConvBackend backend);
// ---------------------------------------------------------------------
//
// Math
//
// ---------------------------------------------------------------------
constexpr int input_batch_size_dim = 0; // also grad_input
constexpr int input_channels_dim = 1;
constexpr int output_batch_size_dim = 0; // also grad_output
constexpr int output_channels_dim = 1;
constexpr int weight_output_channels_dim = 0;
constexpr int weight_input_channels_dim = 1;
// Often written as 2 + max_dim (extra dims for batch size and channels)
constexpr int max_dim = 3;
// ---------------------------------------------------------------------
//
// Checking
//
// ---------------------------------------------------------------------
// Used on pad, stride and dilation
static void check_args(CheckedFrom c, IntArrayRef args, size_t expected_size, const char* arg_name)
{
TORCH_CHECK(args.size() <= expected_size,
"Too many ", arg_name, " values (", args.size(), ") supplied, expecting ",
expected_size, " (while checking arguments for ", c, ")");
TORCH_CHECK(args.size() >= expected_size,
"Not enough ", arg_name, " values (", args.size(), ") supplied, expecting ",
expected_size, " (while checking arguments for ", c, ")");
auto num_negative_values = std::count_if(args.begin(), args.end(), [](int x){return x < 0;});
if (num_negative_values > 0){
std::stringstream ss;
ss << arg_name << " should be greater than zero but got (";
std::copy(args.begin(), args.end() - 1, std::ostream_iterator<int>(ss,", "));
ss << args.back() << ")" << " (while checking arguments for " << c << ")";
AT_ERROR(ss.str());
}
}
// NOTE [ Convolution checks ]
//
// NB: For many call sites, it is not strictly necessary to check all of
// these relationships (for example, for forward convolution, we compute
// the size of output ourselves, so we don't actually need to check
// output. However, writing a single function that does everything
// means we get to reuse it for both forwards and all backwards
// variants, even when the set of "real" inputs varies. The magic of
// relational computing!
//
// (There is one downside, which is that it is slightly harder to write
// error messages which are able to distinguish between real inputs
// (which the user can change) and computed inputs (which the user can
// only indirectly affect). It would be an interesting exercise to
// come up with a general framework to handle such situations.)
static void convolution_shape_check(
CheckedFrom c,
const TensorGeometryArg& input, const TensorGeometryArg& weight, const TensorGeometryArg& output,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups)
{
check_args(c, padding, input->dim() - 2, "padding");
check_args(c, stride, padding.size(), "stride");
check_args(c, dilation, padding.size(), "dilation");
// Input
checkDimRange(c, input, 3, 6 /* exclusive */);
checkSize_symint(c, input, input_channels_dim, weight->size(1) * groups);
// Weight
checkSameDim(c, input, weight);
// TODO: check that output->size() matches output_sizes
// TODO: check that weight matches output->sizes()
checkSameDim(c, input, output);
}
// NB: conv_output_size and conv_input_size are not bijections,
// as conv_output_size loses information; this is why conv_input_size
// takes an extra output_padding argument to resolve the ambiguity.
template <typename T>
static inline std::vector<T> _conv_output_size(
ArrayRef<T> input_size, ArrayRef<T> weight_size,
ArrayRef<T> padding, IntArrayRef stride, IntArrayRef dilation = IntArrayRef()
) {
// ASSERT(input_size.size() > 2)
// ASSERT(input_size.size() == weight_size.size())
bool has_dilation = !dilation.empty();
auto dim = input_size.size();
std::vector<T> output_size(dim);
output_size[0] = input_size[input_batch_size_dim];
output_size[1] = weight_size[weight_output_channels_dim];
for (const auto d : c10::irange(2, dim)) {
auto dilation_ = has_dilation ? dilation[d - 2] : 1;
auto kernel = dilation_ * (weight_size[d] - 1) + 1;
output_size[d] = (input_size[d] + (2 * padding[d - 2]) - kernel) / stride[d - 2] + 1;
}
return output_size;
}
static inline std::vector<int64_t> conv_output_size(
IntArrayRef input_size, IntArrayRef weight_size,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation = IntArrayRef()
) {
return _conv_output_size(input_size, weight_size, padding, stride, dilation);
}
static inline std::vector<c10::SymInt> conv_output_size(
SymIntArrayRef input_size, SymIntArrayRef weight_size,
SymIntArrayRef padding, IntArrayRef stride, IntArrayRef dilation = IntArrayRef()
) {
return _conv_output_size(input_size, weight_size, padding, stride, dilation);
}
template <typename T>
std::vector<T> _conv_input_size(
ArrayRef<T> output_size, ArrayRef<T> weight_size,
ArrayRef<T> padding, ArrayRef<T> output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
// ASSERT(output_size.size() > 2)
// ASSERT(output_size.size() == weight_size.size())
auto dim = output_size.size();
std::vector<T> input_size(dim);
input_size[0] = output_size[output_batch_size_dim];
input_size[1] = weight_size[weight_input_channels_dim] * groups;
for (const auto d : c10::irange(2, dim)) {
auto kernel = (weight_size[d] - 1) * dilation[d - 2] + 1;
input_size[d] = (output_size[d] - 1) * stride[d - 2] - (padding[d - 2] * 2) +
kernel + output_padding[d - 2];
}
return input_size;
}
static inline std::vector<c10::SymInt> conv_input_size(
SymIntArrayRef output_size, SymIntArrayRef weight_size,
SymIntArrayRef padding, SymIntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_input_size(output_size, weight_size, padding, output_padding, stride, dilation, groups);
}
static inline std::vector<int64_t> conv_input_size(
IntArrayRef output_size, IntArrayRef weight_size,
IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_input_size(output_size, weight_size, padding, output_padding, stride, dilation, groups);
}
template <typename T>
std::vector<T> _conv_weight_size(
ArrayRef<T> input_size, ArrayRef<T> output_size,
ArrayRef<T> padding, ArrayRef<T> output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
auto dim = input_size.size();
std::vector<T> weight_size(dim);
weight_size[0] = output_size[1];
weight_size[1] = input_size[1] / groups;
for (const auto d : c10::irange(2, dim)) {
auto kernel = input_size[d] - (output_size[d] - 1) * stride[d - 2]
+ padding[d - 2] * 2 - output_padding[d - 2];
weight_size[d] = (kernel - 1) / dilation[d - 2] + 1;
}
return weight_size;
}
static inline std::vector<c10::SymInt> conv_weight_size(
SymIntArrayRef input_size, SymIntArrayRef output_size,
SymIntArrayRef padding, SymIntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_weight_size(input_size, output_size, padding, output_padding, stride, dilation, groups);
}
static inline std::vector<int64_t> conv_weight_size(
IntArrayRef input_size, IntArrayRef output_size,
IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_weight_size(input_size, output_size, padding, output_padding, stride, dilation, groups);
}
static inline Tensor reshape_bias(int64_t dim, const Tensor& bias) {
std::vector<int64_t> shape(dim, 1);
shape[1] = -1;
return bias.reshape(shape);
}
static inline at::MemoryFormat cudnn_conv_suggest_memory_format(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (!at::detail::getCUDAHooks().compiledWithCuDNN() ||
input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return at::MemoryFormat::Contiguous;
}
long cudnn_version = at::detail::getCUDAHooks().versionCuDNN();
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
auto weight_ndim = weight.ndimension();
bool can_use_cudnn_channels_last_2d = (cudnn_version >= 7603) && (weight_ndim == 4) && (
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast)
);
if (can_use_cudnn_channels_last_2d) {
return at::MemoryFormat::ChannelsLast;
}
bool can_use_cudnn_channels_last_3d = (cudnn_version >= 8005) && (weight_ndim == 5) && (
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d)
);
if (can_use_cudnn_channels_last_3d) {
return at::MemoryFormat::ChannelsLast3d;
}
return at::MemoryFormat::Contiguous;
}
static inline bool miopen_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (!at::detail::getCUDAHooks().compiledWithMIOpen() ||
input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_miopen_channels_last_2d = (
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast)
);
bool can_use_miopen_channels_last_3d = false;
return can_use_miopen_channels_last_2d || can_use_miopen_channels_last_3d;
}
static inline bool mkldnn_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
// disable NHWC for MkldnnCPU tensor.
if (input.is_mkldnn() || weight.is_mkldnn()) {
return false;
}
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_mkldnn_channels_last_2d =
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast);
// TODO: add channels last 3d support
bool can_use_mkldnn_channels_last_3d = false;
return can_use_mkldnn_channels_last_2d || can_use_mkldnn_channels_last_3d;
}
static inline bool thnn_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_thnn_channels_last_2d = input.device().is_cpu() && (
(input_memory_format == at::MemoryFormat::ChannelsLast) || (
weight_memory_format == at::MemoryFormat::ChannelsLast));
return can_use_thnn_channels_last_2d;
}
}} // namespace at::native