forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DilatedMaxPool2d.cpp
218 lines (187 loc) · 8.83 KB
/
DilatedMaxPool2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/NamedTensor.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorMeta.h>
#include <ATen/native/Pool.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/max_pool2d_with_indices_backward_native.h>
#include <ATen/ops/max_pool2d_with_indices_native.h>
#include <ATen/ops/zeros_like_ops.h>
#endif
namespace at {
namespace meta {
using namespace native;
TORCH_META_FUNC(max_pool2d_with_indices)
(const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2,
"max_pool2d: kernel_size must either be a single int, or a tuple of two ints")
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
// NB: stride default is not expressible as an integer constant, so we accept
// empty stride for this case
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
"max_pool2d: stride must either be omitted, a single int, or a tuple of two ints")
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
"max_pool2d: padding must be either be a single int, or a tuple of two ints");
const int padH = safe_downcast<int, int64_t>(padding[0]);
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
TORCH_CHECK(dilation.size() == 1 || dilation.size() == 2,
"max_pool2d: dilation must be either a single int, or a tuple of two ints");
const int dilationH = safe_downcast<int, int64_t>(dilation[0]);
const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]);
const auto memory_format = input.suggest_memory_format();
if (memory_format == at::MemoryFormat::ChannelsLast) {
TORCH_CHECK(input.ndimension() == 4,
"non-empty 4D (batch mode) tensor expected for input with channels_last layout");
} else if (memory_format == at::MemoryFormat::Contiguous) {
TORCH_CHECK((input.ndimension() == 3 || input.ndimension() == 4),
"non-empty 3D or 4D (batch mode) tensor expected for input");
} else {
TORCH_CHECK(false, "Unsupport memory format. Supports only ChannelsLast, Contiguous");
}
/* sizes */
const int64_t nbatch = input.ndimension() == 4 ? input.size(-4) : 1;
const int64_t nInputPlane = input.size(-3);
const int64_t inputHeight = input.size(-2);
const int64_t inputWidth = input.size(-1);
const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, dilationH, ceil_mode);
const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, dilationW, ceil_mode);
pool2d_shape_check(
input,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
nInputPlane,
inputHeight, inputWidth,
outputHeight, outputWidth, memory_format);
/* resize output and indices */
DimnameList maybe_names = input.has_names() ? input.names() : DimnameList{};
if (input.ndimension() == 3) {
set_output_raw_strided(0, {nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format), maybe_names);
/* indices will contain the locations for each output point */
set_output_raw_strided(1, {nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format).dtype(kLong), maybe_names);
} else {
set_output_raw_strided(0, {nbatch, nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format), maybe_names);
/* indices will contain the locations for each output point */
set_output_raw_strided(1, {nbatch, nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format).dtype(kLong), maybe_names);
}
}
TORCH_META_FUNC(max_pool2d_with_indices_backward)
(const Tensor& gradOutput,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
const Tensor& indices) {
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2,
"max_pool2d: kernel_size must either be a single int, or a tuple of two ints")
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
// NB: stride default is not expressible as an integer constant, so we accept
// empty stride for this case
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
"max_pool2d: stride must either be omitted, a single int, or a tuple of two ints")
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
"max_pool2d: padding must be either be a single int, or a tuple of two ints");
const int padH = safe_downcast<int, int64_t>(padding[0]);
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
TORCH_CHECK(dilation.size() == 1 || dilation.size() == 2,
"max_pool2d: dilation must be either a single int, or a tuple of two ints");
const int dilationH = safe_downcast<int, int64_t>(dilation[0]);
const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]);
TORCH_CHECK(input.dtype() == gradOutput.dtype(),
"expected dtype ", input.dtype(), " for `gradOutput` but got dtype ", gradOutput.dtype());
const auto memory_format = input.suggest_memory_format();
if (memory_format == at::MemoryFormat::ChannelsLast) {
TORCH_CHECK(input.ndimension() == 4,
"non-empty 4D (batch mode) tensor expected for input with channels_last layout");
} else if (memory_format == at::MemoryFormat::Contiguous) {
TORCH_CHECK((input.ndimension() == 3 || input.ndimension() == 4),
"non-empty 3D or 4D (batch mode) tensor expected for input");
} else {
TORCH_CHECK(false, "Unsupport memory format. Supports only ChannelsLast, Contiguous");
}
/* sizes */
const int64_t nInputPlane = input.size(-3);
const int64_t inputHeight = input.size(-2);
const int64_t inputWidth = input.size(-1);
/* XXX preserve the existing shape check behavior */
const int64_t outputHeight_for_shape_check = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, dilationH, ceil_mode);
const int64_t outputWidth_for_shape_check = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, dilationW, ceil_mode);
max_pool2d_backward_shape_check(
input,
gradOutput,
indices,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
nInputPlane,
inputHeight, inputWidth,
outputHeight_for_shape_check, outputWidth_for_shape_check,
memory_format);
set_output_raw_strided(0, input.sizes(), {}, input.options().memory_format(memory_format),
input.has_names() ? input.names() : DimnameList{});
}
} // namespace meta
namespace native {
TORCH_IMPL_FUNC(max_pool2d_with_indices_out_cpu)
(const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
const Tensor& output,
const Tensor& indices) {
NoNamesGuard guard;
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
const int padH = safe_downcast<int, int64_t>(padding[0]);
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
const int dilationH = safe_downcast<int, int64_t>(dilation[0]);
const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]);
max_pool2d_kernel(
kCPU, output, indices, input,
kW, kH,
dW, dH,
padW, padH,
dilationW, dilationH);
}
TORCH_IMPL_FUNC(max_pool2d_with_indices_backward_out_cpu)
(const Tensor& gradOutput,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
const Tensor& indices,
const Tensor& gradInput) {
NoNamesGuard guard;
gradInput.zero_();
max_pool2d_backward_kernel(
kCPU, const_cast<Tensor&>(gradInput),
gradOutput, indices);
}
DEFINE_DISPATCH(max_pool2d_kernel);
DEFINE_DISPATCH(max_pool2d_backward_kernel);
} // at::native
} // at