forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Histogram.cpp
456 lines (372 loc) · 19.4 KB
/
Histogram.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Histogram.h>
#include <ATen/native/Resize.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_histogramdd_bin_edges.h>
#include <ATen/ops/_histogramdd_bin_edges_native.h>
#include <ATen/ops/_histogramdd_from_bin_cts.h>
#include <ATen/ops/_histogramdd_from_bin_cts_native.h>
#include <ATen/ops/_histogramdd_from_bin_tensors.h>
#include <ATen/ops/_histogramdd_from_bin_tensors_native.h>
#include <ATen/ops/aminmax.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/histc_native.h>
#include <ATen/ops/histogram_native.h>
#include <ATen/ops/histogramdd_native.h>
#include <ATen/ops/linspace_native.h>
#endif
#include <numeric>
#include <tuple>
#include <vector>
#include <functional>
#include <c10/util/ArrayRef.h>
#include <c10/core/ScalarType.h>
#include <c10/core/DefaultDtype.h>
#include <c10/util/irange.h>
/* Implements a numpy-like histogramdd function running on cpu
* https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html
*
* See the docstr for torch.histogramdd in torch/functional.py for further explanation.
*
* - torch.histogramdd(input, bins, range=None, weight=None, density=False)
* input - tensor with shape (M, N). input is interpreted as M coordinates in N-dimensional space.
* If a tensor with more than 2 dimensions is passed, all but the last dimension will be flattened.
* bins - int[] of length N or tensor list of length N. If int[], defines the number of equal-width bins
* in each dimension. If tensor list, defines the sequences of bin edges, including rightmost edges,
* for each dimension.
* range - float[] of length 2 * N, optional. If specified, defines the leftmost and rightmost bin edges
* for each dimension.
* weight - tensor, optional. If provided, weight should have the same shape as input excluding its last dimension.
* Each N-dimensional value in input contributes its associated weight towards its bin's result.
* If weight is not specified, each value has weight 1 by default.
* density - bool, optional. If false (default), the result will contain the total count (weight) in each bin.
* If True, each count (weight) is divided by the total count (total weight), then divided by the
* volume of its associated bin.
*
* Returns:
* hist - N-dimensional tensor containing the values of the histogram.
* bin_edges - tensor list of length N containing the edges of the histogram bins in each dimension.
* Bins include their left edge and exclude their right edge, with the exception of the
* rightmost bin in each dimension which includes both of its edges.
*
* Restrictions are defined in histogram_check_inputs() and in select_outer_bin_edges().
*/
namespace at { namespace native {
DEFINE_DISPATCH(histogramdd_stub);
DEFINE_DISPATCH(histogramdd_linear_stub);
namespace {
/* Checks properties of input tensors input, bins, and weight.
*/
void histogramdd_check_inputs(const Tensor& input, const TensorList& bins, const c10::optional<Tensor>& weight) {
TORCH_CHECK(input.dim() >= 2, "torch.histogramdd: input tensor should have at least 2 dimensions, but got ",
input.dim());
const int64_t N = input.size(-1);
TORCH_CHECK(static_cast<int64_t>(bins.size()) == N, "torch.histogramdd: expected ", N, " sequences of bin edges for a ", N,
"-dimensional histogram but got ", bins.size());
auto input_dtype = input.dtype();
for (const auto dim : c10::irange(N)) {
const Tensor& dim_bins = bins[dim];
auto bins_dtype = dim_bins.dtype();
TORCH_CHECK(input_dtype == bins_dtype, "torch.histogramdd: input tensor and bins tensors should",
" have the same dtype, but got input with dtype ", input_dtype,
" and bins for dimension ", dim, " with dtype ", bins_dtype);
const int64_t dim_bins_dim = dim_bins.dim();
TORCH_CHECK(dim_bins_dim == 1, "torch.histogramdd: bins tensor should have one dimension,",
" but got ", dim_bins_dim, " dimensions in the bins tensor for dimension ", dim);
const int64_t numel = dim_bins.numel();
TORCH_CHECK(numel > 0, "torch.histogramdd: bins tensor should have at least 1 element,",
" but got ", numel, " elements in the bins tensor for dimension ", dim);
}
if (weight.has_value()) {
TORCH_CHECK(input.dtype() == weight.value().dtype(), "torch.histogramdd: if weight tensor is provided,"
" input tensor and weight tensor should have the same dtype, but got input(", input.dtype(), ")",
", and weight(", weight.value().dtype(), ")");
/* If a weight tensor is provided, we expect its shape to match that of
* the input tensor excluding its innermost dimension N.
*/
auto input_sizes = input.sizes().vec();
input_sizes.pop_back();
auto weight_sizes = weight.value().sizes().vec();
if (weight_sizes.empty()) {
// correctly handle scalars
weight_sizes = {1};
}
TORCH_CHECK(input_sizes == weight_sizes, "torch.histogramdd: if weight tensor is provided it should have"
" the same shape as the input tensor excluding its innermost dimension, but got input with shape ",
input.sizes(), " and weight with shape ", weight.value().sizes());
}
}
/* Checks properties of output tensors hist and bin_edges, then resizes them.
*/
void histogramdd_prepare_out(const Tensor& input, const std::vector<int64_t>& bin_ct,
const Tensor& hist, const TensorList& bin_edges) {
const int64_t N = input.size(-1);
TORCH_INTERNAL_ASSERT((int64_t)bin_ct.size() == N);
TORCH_INTERNAL_ASSERT((int64_t)bin_edges.size() == N);
TORCH_CHECK(input.dtype() == hist.dtype(), "torch.histogram: input tensor and hist tensor should",
" have the same dtype, but got input ", input.dtype(), " and hist ", hist.dtype());
for (const auto dim : c10::irange(N)) {
TORCH_CHECK(input.dtype() == bin_edges[dim].dtype(), "torch.histogram: input tensor and bin_edges tensor should",
" have the same dtype, but got input ", input.dtype(), " and bin_edges ", bin_edges[dim].dtype(),
" for dimension ", dim);
TORCH_CHECK(bin_ct[dim] > 0,
"torch.histogram(): bins must be > 0, but got ", bin_ct[dim], " for dimension ", dim);
at::native::resize_output(bin_edges[dim], bin_ct[dim] + 1);
}
at::native::resize_output(hist, bin_ct);
}
void histogramdd_prepare_out(const Tensor& input, TensorList bins,
const Tensor& hist, const TensorList& bin_edges) {
std::vector<int64_t> bin_ct(bins.size());
std::transform(bins.begin(), bins.end(), bin_ct.begin(), [](Tensor t) { return t.numel() - 1; });
histogramdd_prepare_out(input, bin_ct, hist, bin_edges);
}
template<typename scalar_t>
void infer_bin_edges_from_input(const Tensor& input, const int64_t N,
std::vector<double> &leftmost_edges, std::vector<double> &rightmost_edges) {
// Calls aminmax on input with dim=0, reducing all but the innermost dimension of input.
Tensor min, max;
std::tie(min, max) = aminmax(input, 0);
TORCH_INTERNAL_ASSERT(min.is_contiguous() && max.is_contiguous());
const scalar_t *min_data = min.data_ptr<scalar_t>();
std::copy(min_data, min_data + N, leftmost_edges.begin());
const scalar_t *max_data = max.data_ptr<scalar_t>();
std::copy(max_data, max_data + N, rightmost_edges.begin());
}
/* Determines the outermost bin edges. For simplicity when calling into aminmax,
* assumes that input has already been reshaped to (M, N).
*/
std::pair<std::vector<double>, std::vector<double>>
select_outer_bin_edges(const Tensor& input, c10::optional<c10::ArrayRef<double>> range) {
TORCH_INTERNAL_ASSERT(input.dim() == 2, "expected input to have shape (M, N)");
const int64_t N = input.size(-1);
// Default ranges for empty input matching numpy.histogram's default
std::vector<double> leftmost_edges(N, 0.);
std::vector<double> rightmost_edges(N, 1.);
if (range.has_value()) {
// range is specified
TORCH_CHECK((int64_t)range.value().size() == 2 * N, "torch.histogramdd: for a ", N, "-dimensional histogram",
" range should have ", 2 * N, " elements, but got ", range.value().size());
for (const auto dim : c10::irange(N)) {
leftmost_edges[dim] = range.value()[2 * dim];
rightmost_edges[dim] = range.value()[2 * dim + 1];
}
} else if (input.numel() > 0) {
// non-empty input
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "histogramdd", [&]() {
infer_bin_edges_from_input<scalar_t>(input, N, leftmost_edges, rightmost_edges);
});
}
for (const auto dim : c10::irange(N)) {
double leftmost_edge = leftmost_edges[dim];
double rightmost_edge = rightmost_edges[dim];
TORCH_CHECK(std::isfinite(leftmost_edge) && std::isfinite(rightmost_edge),
"torch.histogramdd: dimension ", dim, "'s range [",
leftmost_edge, ", ", rightmost_edge, "] is not finite");
TORCH_CHECK(leftmost_edge <= rightmost_edge, "torch.histogramdd: min should not exceed max, but got",
" min ", leftmost_edge, " max ", rightmost_edge, " for dimension ", dim);
// Expand empty range to match numpy behavior and avoid division by 0 in normalization
if (leftmost_edge == rightmost_edge) {
leftmost_edges[dim] -= 0.5;
rightmost_edges[dim] += 0.5;
}
}
return std::make_pair(leftmost_edges, rightmost_edges);
}
/* histc's version of the logic for outermost bin edges.
*/
std::pair<double, double> histc_select_outer_bin_edges(const Tensor& input,
const Scalar& min, const Scalar& max) {
double leftmost_edge = min.to<double>();
double rightmost_edge = max.to<double>();
if (leftmost_edge == rightmost_edge && input.numel() > 0) {
auto extrema = aminmax(input);
leftmost_edge = std::get<0>(extrema).item<double>();
rightmost_edge = std::get<1>(extrema).item<double>();
}
if (leftmost_edge == rightmost_edge) {
leftmost_edge -= 1;
rightmost_edge += 1;
}
TORCH_CHECK(!(std::isinf(leftmost_edge) || std::isinf(rightmost_edge) ||
std::isnan(leftmost_edge) || std::isnan(rightmost_edge)),
"torch.histc: range of [", leftmost_edge, ", ", rightmost_edge, "] is not finite");
TORCH_CHECK(leftmost_edge < rightmost_edge, "torch.histc: max must be larger than min");
return std::make_pair(leftmost_edge, rightmost_edge);
}
} // namespace
std::vector<Tensor> allocate_bin_edges_tensors(const Tensor& self) {
TORCH_CHECK(self.dim() >= 2, "torch.histogramdd: input tensor should have at least 2 dimensions");
const int64_t N = self.size(-1);
std::vector<Tensor> bin_edges_out(N);
for (const auto dim : c10::irange(N)) {
bin_edges_out[dim] = at::empty({0}, self.options(), MemoryFormat::Contiguous);
}
return bin_edges_out;
}
/* Versions of histogramdd in which bins is a Tensor[] defining the sequences of bin edges.
*/
Tensor& histogramdd_out_cpu(const Tensor& self, TensorList bins,
const c10::optional<Tensor>& weight, bool density,
Tensor& hist, TensorList& bin_edges) {
histogramdd_check_inputs(self, bins, weight);
histogramdd_prepare_out(self, bins, hist, bin_edges);
for (const auto dim : c10::irange(bins.size())) {
bin_edges[dim].copy_(bins[dim]);
}
histogramdd_stub(self.device().type(), self, weight, density, hist, bin_edges);
return hist;
}
Tensor histogramdd_cpu(const Tensor& self, TensorList bins,
const c10::optional<Tensor>& weight, bool density) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
std::vector<Tensor> bin_edges_out = allocate_bin_edges_tensors(self);
TensorList bin_edges_out_tl(bin_edges_out);
histogramdd_out_cpu(self, bins, weight, density, hist, bin_edges_out_tl);
return hist;
}
/* Versions of histogramdd in which bins is an int[]
* defining the number of bins in each dimension.
*/
std::vector<Tensor>& histogramdd_bin_edges_out_cpu(const Tensor& self, IntArrayRef bin_ct,
c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density,
std::vector<Tensor>& bin_edges_out) {
TensorList bin_edges_out_tl(bin_edges_out);
const int64_t N = self.size(-1);
const int64_t M = std::accumulate(self.sizes().begin(), self.sizes().end() - 1,
(int64_t)1, std::multiplies<int64_t>());
Tensor reshaped_self = self.reshape({ M, N });
auto outer_bin_edges = select_outer_bin_edges(reshaped_self, range);
const int64_t bin_size = bin_ct.size();
TORCH_CHECK(
N == bin_size,
"histogramdd: The size of bins must be equal to the innermost dimension of the input.");
for (const auto dim : c10::irange(N)) {
linspace_out(outer_bin_edges.first[dim], outer_bin_edges.second[dim],
bin_ct[dim] + 1, bin_edges_out[dim]);
}
return bin_edges_out;
}
std::vector<Tensor> histogramdd_bin_edges_cpu(const Tensor& self, IntArrayRef bin_ct,
c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density) {
std::vector<Tensor> bin_edges_out = allocate_bin_edges_tensors(self);
return histogramdd_bin_edges_out_cpu(self, bin_ct, range, weight, density, bin_edges_out);
}
Tensor& histogramdd_out_cpu(const Tensor& self, IntArrayRef bin_ct,
c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density,
Tensor& hist, TensorList& bin_edges) {
std::vector<Tensor> bins = histogramdd_bin_edges_cpu(self, bin_ct, range, weight, density);
histogramdd_check_inputs(self, bins, weight);
histogramdd_prepare_out(self, bins, hist, bin_edges);
for (const auto dim : c10::irange(bins.size())) {
bin_edges[dim].copy_(bins[dim]);
}
histogramdd_linear_stub(self.device().type(), self, weight, density, hist, bin_edges, true);
return hist;
}
Tensor histogramdd_cpu(const Tensor& self, IntArrayRef bin_ct,
c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
std::vector<Tensor> bin_edges_out = allocate_bin_edges_tensors(self);
TensorList bin_edges_out_tl(bin_edges_out);
histogramdd_out_cpu(self, bin_ct, range, weight, density, hist, bin_edges_out_tl);
return hist;
}
/* Versions of histogram in which bins is a Tensor defining the sequence of bin edges.
*/
std::tuple<Tensor&, Tensor&>
histogram_out_cpu(const Tensor& self, const Tensor& bins,
const c10::optional<Tensor>& weight, bool density,
Tensor& hist, Tensor& bin_edges) {
Tensor reshaped_self = self.reshape({ self.numel(), 1 });
c10::optional<Tensor> reshaped_weight = weight.has_value()
? weight.value().reshape({ weight.value().numel() }) : weight;
TensorList bins_in = bins;
TensorList bins_out = bin_edges;
histogramdd_out_cpu(reshaped_self, bins_in, reshaped_weight, density, hist, bins_out);
return std::forward_as_tuple(hist, bin_edges);
}
std::tuple<Tensor, Tensor>
histogram_cpu(const Tensor& self, const Tensor& bins,
const c10::optional<Tensor>& weight, bool density) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
Tensor bin_edges = at::empty({0}, bins.options(), MemoryFormat::Contiguous);
return histogram_out_cpu(self, bins, weight, density, hist, bin_edges);
}
/* Versions of histogram in which bins is an integer specifying the number of equal-width bins.
*/
std::tuple<Tensor&, Tensor&>
histogram_out_cpu(const Tensor& self, int64_t bin_ct, c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density,
Tensor& hist, Tensor& bin_edges) {
Tensor reshaped_self = self.reshape({ self.numel(), 1 });
c10::optional<Tensor> reshaped_weight = weight.has_value()
? weight.value().reshape({ weight.value().numel() }) : weight;
TensorList bins_in = bin_edges;
TensorList bins_out = bin_edges;
histogramdd_prepare_out(reshaped_self, std::vector<int64_t>{bin_ct}, hist, bins_out);
auto outer_bin_edges = select_outer_bin_edges(reshaped_self, range);
linspace_out(outer_bin_edges.first[0], outer_bin_edges.second[0], bin_ct + 1, bin_edges);
histogramdd_check_inputs(reshaped_self, bins_in, reshaped_weight);
histogramdd_linear_stub(reshaped_self.device().type(), reshaped_self, reshaped_weight, density, hist, bin_edges, true);
return std::forward_as_tuple(hist, bin_edges);
}
std::tuple<Tensor, Tensor>
histogram_cpu(const Tensor& self, int64_t bin_ct, c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
Tensor bin_edges_out = at::empty({0}, self.options());
return histogram_out_cpu(self, bin_ct, range, weight, density, hist, bin_edges_out);
}
/* Narrowed interface for the legacy torch.histc function.
*/
Tensor& histogram_histc_cpu_out(const Tensor& self, int64_t bin_ct,
const Scalar& min, const Scalar& max, Tensor& hist) {
Tensor bin_edges = at::empty({0}, self.options());
Tensor reshaped = self.reshape({ self.numel(), 1 });
TensorList bins_in = bin_edges;
TensorList bins_out = bin_edges;
histogramdd_prepare_out(reshaped, std::vector<int64_t>{bin_ct}, hist, bins_out);
auto outer_bin_edges = histc_select_outer_bin_edges(self, min, max);
linspace_out(outer_bin_edges.first, outer_bin_edges.second, bin_ct + 1, bin_edges);
histogramdd_check_inputs(reshaped, bins_in, {});
histogramdd_linear_stub(reshaped.device().type(), reshaped,
c10::optional<Tensor>(), false, hist, bin_edges, false);
return hist;
}
Tensor histogram_histc_cpu(const Tensor& self, int64_t bin_ct,
const Scalar& min, const Scalar& max) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
return histogram_histc_cpu_out(self, bin_ct, min, max, hist);
}
std::tuple<Tensor, std::vector<Tensor>> histogramdd(
const Tensor &self, TensorList bins, c10::optional<ArrayRef<double>> /*range*/,
const c10::optional<Tensor> &weight, bool density) {
auto hist = at::_histogramdd_from_bin_tensors(self, bins, weight, density);
return std::tuple<Tensor, std::vector<Tensor>>{
std::move(hist), bins.vec()};
}
std::tuple<Tensor, std::vector<Tensor>> histogramdd(
const Tensor &self, IntArrayRef bins, c10::optional<ArrayRef<double>> range,
const c10::optional<Tensor> &weight, bool density) {
auto bin_edges = at::_histogramdd_bin_edges(self, bins, range, weight, density);
auto hist = at::_histogramdd_from_bin_cts(self, bins, range, weight, density);
return std::tuple<Tensor, std::vector<Tensor>>{
std::move(hist), std::move(bin_edges)};
}
std::tuple<Tensor, std::vector<Tensor>> histogramdd(
const Tensor &self, int64_t bins, c10::optional<ArrayRef<double>> range,
const c10::optional<Tensor> &weight, bool density) {
DimVector bins_v(self.size(-1), bins);
return at::native::histogramdd(self, bins_v, range, weight, density);
}
}} // namespace at::native