forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.cpp
1420 lines (1336 loc) · 48.5 KB
/
export.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/jit/serialization/export.h>
#include <ATen/ATen.h>
#include <ATen/Utils.h>
#include <ATen/core/functional.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/symbolic.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#include <torch/csrc/jit/serialization/onnx.h>
#include <torch/csrc/onnx/onnx.h>
#include <torch/version.h>
#include <atomic>
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wnewline-eof")
#include <onnx/checker.h>
C10_DIAGNOSTIC_POP()
#include <onnx/onnx_pb.h>
#include <onnx/proto_utils.h>
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wsuggest-override")
#include <onnx/shape_inference/implementation.h>
C10_DIAGNOSTIC_POP()
#include <fstream>
#include <memory>
#include <regex>
#include <set>
#include <string>
#include <vector>
namespace torch::jit {
void writeArchiveAndTensors(
const std::string& archive_name,
const char* data,
size_t size,
const std::vector<at::Tensor>& tensors,
caffe2::serialize::PyTorchStreamWriter& out) {
std::string prefix = archive_name + "/";
size_t i = 0;
for (const auto& td : tensors) {
WriteableTensorData writable_td = getWriteableTensorData(td);
std::string fname = prefix + std::to_string(i++);
out.writeRecord(fname, writable_td.data(), writable_td.sizeInBytes());
}
std::string fname = archive_name + ".pkl";
out.writeRecord(fname, data, size);
}
namespace {
namespace onnx_torch = ::torch::onnx;
namespace onnx = ::ONNX_NAMESPACE;
const static int kInvalidOpsetVersion = -1;
const static int kMainOpsetVersion = 18;
// Based on OP_SET_ID_VERSION_MAP in
// https://github.com/onnx/onnx/blob/master/onnx/helper.py.
constexpr static std::array<int64_t, kMainOpsetVersion + 1>
kOpsetVersionToIRVersion = {
kInvalidOpsetVersion,
3, // opset 1
kInvalidOpsetVersion,
kInvalidOpsetVersion,
kInvalidOpsetVersion,
3, // opset 5
3, // opset 6
3, // opset 7
3, // opset 8
4, // opset 9
5, // opset 10
6, // opset 11
7, // opset 12
7, // opset 13
7, // opset 14
8, // opset 15
8, // opset 16
8, // opset 17
8, // opset 18
};
std::string getNodeStackTraceString(const Node* n) {
return n->sourceRange().str();
}
void validateBlock(
Block* b,
onnx_torch::OperatorExportTypes operator_export_type) {
for (auto node : b->nodes()) {
for (Block* sub_block : node->blocks()) {
validateBlock(sub_block, operator_export_type);
}
// Macro'ed so we get a marginally better line number on failed export
#define FAIL_EXPORT(name) \
throw std::runtime_error( \
std::string("ONNX export failed: ") + name + \
"\n\nGraph we tried to export:\n" + b->owningGraph()->toString());
// Special error messages for certain types of operators
if (node->kind() == prim::PythonOp) {
if (operator_export_type !=
onnx_torch::OperatorExportTypes::ONNX_FALLTHROUGH) {
auto py_node = static_cast<PythonOp*>(node);
FAIL_EXPORT(
"Couldn't export Python operator " + py_node->name() +
"\n\nDefined at:\n" + getNodeStackTraceString(node))
}
} else {
#ifdef BUILD_CAFFE2
// Assuming this is a Caffe2 change as it only modifies an aten op
// for operator_export_type == ONNX_ATEN_FALLBACK, which is a common
// pattern for Caffe2-specific scenarios.
if (node->kind() == aten::expand) {
if (operator_export_type ==
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK) {
WithInsertPoint guard(node);
auto* new_node =
b->owningGraph()->insertNode(b->owningGraph()->create(
Symbol(::c10::aten::ATen),
node->inputs(),
node->outputs().size()));
for (size_t i = 0; i < node->outputs().size(); ++i) {
node->output(i)->replaceAllUsesWith(new_node->output(i));
}
new_node->s_(Symbol::fromQualString("attr::operator"), "expand");
}
}
#endif
if (node->kind() == prim::PackPadded || node->kind() == prim::PadPacked) {
if (operator_export_type !=
onnx_torch::OperatorExportTypes::ONNX_FALLTHROUGH) {
FAIL_EXPORT(
"Cannot export individual pack_padded_sequence or pad_packed_sequence; these operations must occur in pairs.\n\nUsage of this operation occurred at:\n" +
getNodeStackTraceString(node));
}
}
bool is_aten_enabled = operator_export_type ==
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK ||
operator_export_type == onnx_torch::OperatorExportTypes::ONNX_ATEN ||
operator_export_type ==
onnx_torch::OperatorExportTypes::ONNX_FALLTHROUGH;
if (node->kind().is_aten() && !is_aten_enabled && !node->mustBeNone()) {
FAIL_EXPORT(
"Couldn't export operator " + node->kind().toDisplayString() +
"\n\nDefined at:\n" + getNodeStackTraceString(node));
}
}
#undef FAIL_EXPORT
}
}
void validateGraph(
const std::shared_ptr<Graph>& graph,
onnx_torch::OperatorExportTypes operator_export_type) {
validateBlock(graph->block(), operator_export_type);
}
std::string GetFileRootPath(const std::string& rootPath) {
std::string rootPath_ = rootPath;
// First, making slash consistent.
std::replace(rootPath_.begin(), rootPath_.end(), '\\', '/');
// Second, remove trailing slashes, if any
std::regex trailer("/+$");
std::string root = std::regex_replace(rootPath_, trailer, std::string());
std::string folder = root.substr(0, root.find_last_of('/'));
if (folder == rootPath_) { // If no root folder specified, select cwd.
return std::string(".");
}
return folder;
}
std::string GetExternalFileName(
const c10::optional<std::string>& external_ref) {
auto tensorName = external_ref.value();
const std::string illegalChars = "\\/:?\"<>|";
for (char& i : tensorName) {
if (illegalChars.find(i) != std::string::npos) {
i = '_';
}
}
return tensorName;
}
void CloseFile(FILE* fp) {
fclose(fp);
}
void CreateExternalFile(
const at::Tensor& tensor,
const std::string& tensorName,
const std::string& onnx_file_path) {
auto folder = GetFileRootPath(onnx_file_path);
std::string fullFilePath = folder + "/" + tensorName;
std::unique_ptr<FILE, decltype(&CloseFile)> fp(
fopen(fullFilePath.c_str(), "wb"), &CloseFile);
if (fp == nullptr) {
throw std::runtime_error(
std::string("ONNX export failed. Could not open file or directory: ") +
fullFilePath);
}
fwrite(tensor.data_ptr(), tensor.element_size(), tensor.numel(), fp.get());
} // fclose() called here through CloseFile(), if FILE* is not a null pointer.
class GraphEncoder {
public:
GraphEncoder(
const std::shared_ptr<Graph>& graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool defer_weight_export,
bool strip_doc,
bool keep_initializers_as_inputs,
const std::map<std::string, int>& custom_opsets,
bool add_node_names,
bool use_external_data_format,
const std::string& onnx_file_path,
const NodeAttrNameMap& node_attr_to_name = {});
onnx::ModelProto get_model_proto() {
return model_proto_;
}
SymbolDimMap get_symbol_dim_param_map() {
return symbol_dim_map_;
}
RawDataExportMap get_raw_data_export_map() {
return raw_data_export_map_;
}
bool get_use_external_data_format() {
return use_external_data_format_;
}
NodeNameMap get_onnx_node_names() {
return onnx_node_name_map_;
}
private:
// Using std::map instead of std::unordered_map for initializers
// in EncodeGraph constructor so that the order in which initializers
// get written to the ONNX graph is always the deterministic and
// predictable. While this is not a ONNX requirement, it is needed
// for testing purposes in tests that use _export_to_pretty_string()
// for validating ONNX graphs.
void EncodeGraph(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>(),
const std::
unordered_map<std::string, std::unordered_map<int64_t, std::string>>&
dynamic_axes = std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>(),
bool keep_initializers_as_inputs = true,
bool add_node_names = true,
bool use_external_data_format = false,
const std::string& onnx_file_path = std::string());
void EncodeBlock(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>(),
const std::
unordered_map<std::string, std::unordered_map<int64_t, std::string>>&
dynamic_axes = std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>(),
bool keep_initializers_as_inputs = true,
bool add_node_names = true,
bool use_external_data_format = false,
const std::string& onnx_file_path = std::string());
void AddInitializersIntoGraphProto(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>(),
bool use_external_data_format = false,
const std::string& onnx_file_path = std::string());
unsigned long long int GetGraphProtoSize(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>());
void EncodeNode(
onnx::GraphProto* graph_proto,
onnx::NodeProto* node_proto,
const Node* node,
bool add_node_names = true,
bool use_external_data_format = false,
const std::string& onnx_file_path = std::string());
void EncodeTypeProto(
onnx::TypeProto* type_proto,
const TypePtr& node_type,
const std::string& name);
void EncodeLocalFunctionOpsetImport(
onnx::FunctionProto* func_proto,
const Node* n,
std::unordered_set<std::string>& custom_domains);
void EncodeLocalFunction(
onnx::GraphProto* graph_proto,
onnx::FunctionProto* func_proto,
const Node* n,
bool add_node_names = true,
bool use_external_data_format = false,
const std::string& onnx_file_path = std::string());
void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {},
const bool use_external_data_format = false,
const std::string& onnx_file_path = std::string());
void EncodeIntermediateValueInfo(
onnx::GraphProto* graph_proto,
const Value* n);
void EncodeValueInfo(
onnx::GraphProto* graph_proto,
onnx::ValueInfoProto* v,
const Value* n,
const std::
unordered_map<std::string, std::unordered_map<int64_t, std::string>>&
dynamic_axes = std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>());
void EncodeValueInfoType(
onnx::TypeProto* onnx_type,
const TypePtr node_type,
const Value* n,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes);
void AddAttribute(
onnx::NodeProto* node_proto,
const jit::Symbol name,
const std::string& ref_attr_name,
const AttributeKind attr_kind);
void AddAttribute(
onnx::NodeProto* node_proto,
const jit::Node* node,
const jit::Symbol name,
const bool use_external_data_format = false,
const std::string& onnx_file_path = std::string());
void AddAttribute(onnx::FunctionProto* func_proto, const std::string& name);
void TensorTypeToONNXType(
const TensorTypePtr& tensor_type,
const std::string& dim_name_prefix,
const std::string& name,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes,
onnx::TypeProto_Tensor* onnx_tensor_type,
bool assign_dim_param = true);
SymbolDimMap symbol_dim_map_;
onnx::ModelProto model_proto_;
size_t num_blocks_;
size_t num_op_nodes_;
size_t num_external_data_;
onnx_torch::OperatorExportTypes operator_export_type_;
bool strip_doc_;
std::set<std::string> domains_;
RawDataExportMap raw_data_export_map_;
bool defer_weight_export_;
bool use_external_data_format_;
int64_t onnx_opset_version_;
std::map<std::string, int> custom_opsets_;
std::shared_ptr<Graph> graph_;
NodeAttrNameMap node_attr_to_name_;
NodeNameMap onnx_node_name_map_;
// For large models, the parameters can be stored in separate binary files.
// This parameter sets a threshold on the number of elements in the parameter
// tensor, beyond which the parameter is stored in a separate file (if
// use_external_data_format_ is True). This threshold is in place
// so as not to create too many external files.
const size_t ParamSizeThresholdForExternalStorage = 1024;
};
onnx::TensorProto_DataType ATenTypeToOnnxType(at::ScalarType at_type) {
switch (at_type) {
case at::kDouble:
return onnx::TensorProto_DataType_DOUBLE;
case at::kFloat:
return onnx::TensorProto_DataType_FLOAT;
case at::kHalf:
return onnx::TensorProto_DataType_FLOAT16;
case at::kByte:
return onnx::TensorProto_DataType_UINT8;
case at::kChar:
return onnx::TensorProto_DataType_INT8;
case at::kShort:
return onnx::TensorProto_DataType_INT16;
case at::kInt:
return onnx::TensorProto_DataType_INT32;
case at::kLong:
return onnx::TensorProto_DataType_INT64;
case at::kBool:
return onnx::TensorProto_DataType_BOOL;
case at::kQInt8:
return onnx::TensorProto_DataType_INT8;
case at::kQUInt8:
return onnx::TensorProto_DataType_UINT8;
case at::kQInt32:
return onnx::TensorProto_DataType_INT32;
case at::kBFloat16:
return onnx::TensorProto_DataType_BFLOAT16;
default:
TORCH_CHECK(
false,
"ScalarType ",
toString(at_type),
" is an unexpected tensor scalar type");
}
}
onnx::AttributeProto_AttributeType ATenAttributeKindToOnnxAttributeType(
AttributeKind at_kind,
const jit::Symbol name) {
switch (at_kind) {
case AttributeKind::f:
return onnx::AttributeProto_AttributeType_FLOAT;
case AttributeKind::fs:
return onnx::AttributeProto_AttributeType_FLOATS;
case AttributeKind::i:
return onnx::AttributeProto_AttributeType_INT;
case AttributeKind::is:
return onnx::AttributeProto_AttributeType_INTS;
case AttributeKind::s:
return onnx::AttributeProto_AttributeType_STRING;
case AttributeKind::ss:
return onnx::AttributeProto_AttributeType_STRINGS;
case AttributeKind::t:
return onnx::AttributeProto_AttributeType_TENSOR;
case AttributeKind::ts:
return onnx::AttributeProto_AttributeType_TENSORS;
case AttributeKind::ty:
return onnx::AttributeProto_AttributeType_TYPE_PROTO;
case AttributeKind::tys:
return onnx::AttributeProto_AttributeType_TYPE_PROTOS;
case AttributeKind::g:
return onnx::AttributeProto_AttributeType_GRAPH;
case AttributeKind::gs:
return onnx::AttributeProto_AttributeType_GRAPHS;
default:
std::ostringstream err_msg;
err_msg << "attribute \"" << name.toDisplayString()
<< "\" has unexpected kind: " << toString(at_kind);
throw std::runtime_error(err_msg.str());
}
}
GraphEncoder::GraphEncoder(
const std::shared_ptr<Graph>& graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool defer_weight_export,
bool strip_doc,
bool keep_initializers_as_inputs,
const std::map<std::string, int>& custom_opsets,
bool add_node_names,
bool use_external_data_format,
const std::string& onnx_file_path,
const NodeAttrNameMap& node_attr_to_name)
: num_blocks_(0),
num_op_nodes_(0),
num_external_data_(0),
operator_export_type_(operator_export_type),
strip_doc_(strip_doc),
defer_weight_export_(defer_weight_export),
use_external_data_format_(use_external_data_format),
onnx_opset_version_(onnx_opset_version),
custom_opsets_(custom_opsets),
graph_(graph),
node_attr_to_name_(node_attr_to_name) {
model_proto_.set_producer_name("pytorch");
TORCH_CHECK(
onnx_opset_version > 0 &&
static_cast<size_t>(onnx_opset_version) <
kOpsetVersionToIRVersion.size() &&
kOpsetVersionToIRVersion[onnx_opset_version] != kInvalidOpsetVersion,
"Unsupported onnx_opset_version: ",
onnx_opset_version);
model_proto_.set_ir_version(kOpsetVersionToIRVersion[onnx_opset_version]);
model_proto_.set_producer_version(TORCH_VERSION);
validateGraph(graph, operator_export_type);
// If graph proto size exceed maximum protobuf size of 2GB, set
// use_external_data_format to true.
if (!use_external_data_format &&
GetGraphProtoSize(model_proto_.mutable_graph(), graph, initializers) >
INT_MAX) {
GRAPH_DEBUG(
"Exporting model exceed maximum protobuf size of 2GB. Storing model parameters in external data files");
use_external_data_format = true;
// use_external_data_format_ is one of graph_encoder private variable set
// for return `use_external_data_format` value.
use_external_data_format_ = use_external_data_format;
}
if (use_external_data_format) {
TORCH_CHECK(
!onnx_file_path.empty(),
"The serialized model is larger than the 2GiB limit imposed by the protobuf library. ",
"Therefore the output file must be a file path, so that the ONNX external data can ",
"be written to the same directory. Please specify the output file name.");
}
auto* imp = model_proto_.add_opset_import();
// This is the version of ONNX operator set we are targeting
imp->set_version(onnx_opset_version);
EncodeGraph(
model_proto_.mutable_graph(),
graph,
initializers,
dynamic_axes,
keep_initializers_as_inputs,
add_node_names,
use_external_data_format,
onnx_file_path);
for (const std::string& domain : domains_) {
auto* opset = model_proto_.add_opset_import();
opset->set_domain(domain);
// Check if domain version is registered. If not, set to version 1
auto it = custom_opsets.find(domain);
if (it == custom_opsets.end())
opset->set_version(1);
else {
opset->set_version(it->second);
}
}
for (auto const& custom_opset : custom_opsets) {
if (!std::count(domains_.begin(), domains_.end(), custom_opset.first)) {
TORCH_WARN(
"Custom opset domain: '",
custom_opset.first,
"' provided is not used in the model. ",
"Please verify custom opset domain names.");
}
}
}
void GraphEncoder::TensorTypeToONNXType(
const TensorTypePtr& tensor_type,
const std::string& dim_name_prefix,
const std::string& name,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes,
onnx::TypeProto_Tensor* onnx_tensor_type,
bool assign_dim_param) {
if (tensor_type->dim()) {
onnx::TensorShapeProto* shape = onnx_tensor_type->mutable_shape();
auto sizes = tensor_type->symbolic_sizes().sizes().value();
for (const auto i : c10::irange(sizes.size())) {
shape->add_dim();
if ((dynamic_axes.find(name) != dynamic_axes.end()) &&
(dynamic_axes.at(name).find(i) != dynamic_axes.at(name).end())) {
shape->mutable_dim(i)->set_dim_param(dynamic_axes.at(name).at(i));
if (!sizes[i].is_static()) {
symbol_dim_map_[sizes[i]] = dynamic_axes.at(name).at(i);
}
} else if (sizes[i].is_static()) {
shape->mutable_dim(i)->set_dim_value(sizes[i].static_size());
} else if (assign_dim_param) {
if (symbol_dim_map_.find(sizes[i]) == symbol_dim_map_.end()) {
symbol_dim_map_[sizes[i]] =
dim_name_prefix + name + "_dim_" + std::to_string(i);
}
shape->mutable_dim(i)->set_dim_param(symbol_dim_map_[sizes[i]]);
}
}
}
if (tensor_type->scalarType()) {
onnx_tensor_type->set_elem_type(
ATenTypeToOnnxType(tensor_type->scalarType().value()));
}
}
void GraphEncoder::EncodeValueInfoType(
onnx::TypeProto* onnx_type,
const TypePtr node_type,
const Value* n,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes) {
std::string dim_name_prefix;
if (n->node()->kind() != prim::Param) {
dim_name_prefix = n->node()->kind().toUnqualString();
}
if (TensorTypePtr tensor_type = node_type->cast<TensorType>()) {
if (tensor_type->dim() || tensor_type->scalarType()) {
// Encode type if either shape or dtype exists.
onnx::TypeProto_Tensor* onnx_tensor_type =
onnx_type->mutable_tensor_type();
// Do not assign dim_param for sequence tensor type.
// Sequence of tensors could differ in dimension size.
// Use a dimension with neither dim_value nor dim_param set
// to denote an unknown dimension.
// Create and assign dim_param for normal tensor type.
auto is_sequence_tensor = static_cast<bool>(n->type()->cast<ListType>());
TensorTypeToONNXType(
tensor_type,
dim_name_prefix,
n->debugName(),
dynamic_axes,
onnx_tensor_type,
!is_sequence_tensor);
}
} else if (BoolTypePtr bool_type = node_type->cast<BoolType>()) {
onnx::TypeProto_Tensor* onnx_tensor_type = onnx_type->mutable_tensor_type();
onnx_tensor_type->set_elem_type(ATenTypeToOnnxType(at::kBool));
} else if (IntTypePtr int_type = node_type->cast<IntType>()) {
onnx::TypeProto_Tensor* onnx_tensor_type = onnx_type->mutable_tensor_type();
onnx_tensor_type->set_elem_type(ATenTypeToOnnxType(at::kLong));
} else if (FloatTypePtr float_type = node_type->cast<FloatType>()) {
onnx::TypeProto_Tensor* onnx_tensor_type = onnx_type->mutable_tensor_type();
onnx_tensor_type->set_elem_type(ATenTypeToOnnxType(at::kFloat));
} else if (ListTypePtr list_type = node_type->cast<ListType>()) {
auto list_elem_type = list_type->getElementType();
onnx::TypeProto_Sequence* sequence_type =
onnx_type->mutable_sequence_type();
onnx::TypeProto* onnx_tensor_type = sequence_type->mutable_elem_type();
EncodeValueInfoType(onnx_tensor_type, list_elem_type, n, dynamic_axes);
} else if (OptionalTypePtr optional_type = node_type->cast<OptionalType>()) {
auto elem_type = optional_type->getElementType();
if (TensorTypePtr tensor_type = elem_type->cast<TensorType>()) {
onnx::TypeProto_Optional* onnx_optional_type =
onnx_type->mutable_optional_type();
onnx::TypeProto_Tensor* onnx_tensor_type =
onnx_optional_type->mutable_elem_type()->mutable_tensor_type();
TensorTypeToONNXType(
tensor_type,
dim_name_prefix,
n->debugName(),
dynamic_axes,
onnx_tensor_type);
} else if (ListTypePtr inner_node_type = elem_type->cast<ListType>()) {
auto list_elem_type = inner_node_type->getElementType();
if (TensorTypePtr tensor_type = list_elem_type->cast<TensorType>()) {
onnx::TypeProto_Optional* onnx_optional_type =
onnx_type->mutable_optional_type();
onnx::TypeProto_Sequence* onnx_optional_sequence_type =
onnx_optional_type->mutable_elem_type()->mutable_sequence_type();
onnx::TypeProto_Tensor* onnx_tensor_type =
onnx_optional_sequence_type->mutable_elem_type()
->mutable_tensor_type();
TensorTypeToONNXType(
tensor_type,
dim_name_prefix,
n->debugName(),
dynamic_axes,
onnx_tensor_type);
}
}
}
}
void GraphEncoder::EncodeValueInfo(
onnx::GraphProto* graph_proto,
onnx::ValueInfoProto* v,
const Value* n,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes) {
std::string name = n->debugName();
v->set_name(name);
EncodeValueInfoType(v->mutable_type(), n->type(), n, dynamic_axes);
}
void GraphEncoder::EncodeGraph(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool keep_initializers_as_inputs,
bool add_node_names,
bool use_external_data_format,
const std::string& onnx_file_path) {
EncodeBlock(
graph_proto,
graph->block(),
initializers,
dynamic_axes,
keep_initializers_as_inputs,
add_node_names,
use_external_data_format,
onnx_file_path);
}
void GraphEncoder::EncodeBlock(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<
std::string,
std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool keep_initializers_as_inputs,
bool add_node_names,
bool use_external_data_format,
const std::string& onnx_file_path) {
TORCH_INTERNAL_ASSERT(graph_proto != nullptr);
std::string block_name = "torch_jit";
if (num_blocks_) {
block_name += std::to_string(num_blocks_);
}
num_blocks_++;
graph_proto->set_name(block_name);
// Since ONNX IR VERSION 4, initializers do not have to
// be a subset of graph inputs. We use keep_initializers_as_inputs
// argument to determine whether to add initializers
// as inputs or not. If keep_initializers_as_inputs=false,
// we only add non-parameter inputs as inputs to ONNX graph, and
// not the initializers (parameters). If keep_initializers_as_inputs
// =true, we add initializers as inputs too. Setting
// keep_initializers_as_inputs=false allows better
// optimizations, such as constant-folding, on ONNX graphs
// by backends/optimizers.
if (keep_initializers_as_inputs) {
for (auto input : block->inputs()) {
onnx::ValueInfoProto* v = graph_proto->add_input();
EncodeValueInfo(graph_proto, v, input, dynamic_axes);
}
} else {
for (auto input : block->inputs()) {
auto it = initializers.find(input->debugName());
if (it == initializers.end()) {
onnx::ValueInfoProto* v = graph_proto->add_input();
EncodeValueInfo(graph_proto, v, input, dynamic_axes);
}
}
}
for (auto output : block->outputs()) {
onnx::ValueInfoProto* v = graph_proto->add_output();
EncodeValueInfo(graph_proto, v, output, dynamic_axes);
}
for (auto node : block->nodes()) {
if (node->mustBeNone()) {
// None nodes are used to implement optional inputs. One
// way to "not provide" an optional input is to create an
// Undefined node, and pass its output as that input.
continue;
}
if (node->kind() == ::c10::Symbol::onnx("LocalFunctionDef")) {
auto* func_proto = model_proto_.add_functions();
EncodeLocalFunction(
graph_proto,
func_proto,
node,
add_node_names,
use_external_data_format,
onnx_file_path);
continue;
}
auto* n_proto = graph_proto->add_node();
EncodeNode(
graph_proto,
n_proto,
node,
add_node_names,
use_external_data_format,
onnx_file_path);
}
AddInitializersIntoGraphProto(
graph_proto,
block,
initializers,
use_external_data_format,
onnx_file_path);
}
void GraphEncoder::AddInitializersIntoGraphProto(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers,
bool use_external_data_format,
const std::string& onnx_file_path) {
TORCH_INTERNAL_ASSERT(block->inputs().size() >= initializers.size());
for (auto input : block->inputs()) {
auto name_tensor_pair = initializers.find(input->debugName());
if (name_tensor_pair == initializers.end()) {
continue;
}
auto p = graph_proto->add_initializer();
p->set_name(name_tensor_pair->first);
EncodeTensor(
p,
name_tensor_pair->second,
name_tensor_pair->first,
use_external_data_format,
onnx_file_path);
}
}
unsigned long long int GraphEncoder::GetGraphProtoSize(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers) {
unsigned long long int sizes = 0;
for (auto input : graph->inputs()) {
auto name_tensor_pair = initializers.find(input->debugName());
if (name_tensor_pair == initializers.end()) {
continue;
}
onnx::GraphProto* graph_proto_copy = new onnx::GraphProto(*graph_proto);
auto tensor_proto = graph_proto_copy->add_initializer();
const at::Tensor tensor = name_tensor_pair->second;
for (auto d : tensor.sizes()) {
tensor_proto->add_dims(d);
}
tensor_proto->set_data_type(ATenTypeToOnnxType(tensor.scalar_type()));
at::Tensor t;
if (tensor.is_quantized()) {
t = tensor.contiguous();
} else {
t = tensor.contiguous().cpu();
}
tensor_proto->set_raw_data(std::string(
static_cast<char*>(t.data_ptr()), t.element_size() * t.numel()));
sizes += tensor_proto->ByteSizeLong();
delete graph_proto_copy;
graph_proto_copy = nullptr;
}
return sizes;
}
void GraphEncoder::EncodeNode(
onnx::GraphProto* graph_proto,
onnx::NodeProto* node_proto,
const Node* node,
bool add_node_names,
bool use_external_data_format,
const std::string& onnx_file_path) {
if (!strip_doc_) {
node_proto->set_doc_string(node->sourceRange().str());
}
for (auto input : node->inputs()) {
if (input->node()->mustBeNone()) {
node_proto->add_input("");
} else {
node_proto->add_input(input->debugName());
}
}
for (auto output : node->outputs()) {
node_proto->add_output(output->debugName());
EncodeIntermediateValueInfo(graph_proto, output);
}
if (!node->kind().is_onnx()) {
std::string domain;
if (node->kind().is_aten() || node->kind().is_caffe2()) {
domain = node->kind().domainString();
} else { // Custom namespace and domain
domain = node->kind().ns().toUnqualString();
}
// TODO: set correct domain for function proto.
domains_.insert(domain);
node_proto->set_domain(domain);
}
if (operator_export_type_ == onnx_torch::OperatorExportTypes::ONNX) {
TORCH_INTERNAL_ASSERT(
!node->kind().is_aten() && !node->kind().is_prim() &&
!node->kind().is_attr());
}
node_proto->set_op_type(node->kind().toUnqualString());
const auto node_name_attribute_symbol =
Symbol::attr(::torch::onnx::kOnnxNodeNameAttribute);
if (add_node_names) {
std::string node_name =
node_proto->op_type() + "_" + std::to_string(num_op_nodes_);
if (node->hasAttribute(node_name_attribute_symbol)) {
node_name = node->s(node_name_attribute_symbol);
}
node_proto->set_name(node_name);
onnx_node_name_map_[node] = node_name;
num_op_nodes_++;
}
auto attrs_it = node_attr_to_name_.find(node);
for (auto attr_name : node->attributeNames()) {
if (attr_name == node_name_attribute_symbol) {
// Skip the node name attribute.
continue;
}
if (attrs_it != node_attr_to_name_.end()) {
auto attr_it = attrs_it->second.find(attr_name.toUnqualString());
if (attr_it != attrs_it->second.end()) {
AddAttribute(
node_proto, attr_name, attr_it->second, node->kindOf(attr_name));
continue;
}
}
AddAttribute(
node_proto, node, attr_name, use_external_data_format, onnx_file_path);
}
if (node->kind() == ::c10::onnx::Loop) {
TORCH_INTERNAL_ASSERT(node->blocks().size() == 1);
auto body = node_proto->add_attribute();
body->set_name("body");
body->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto g = body->mutable_g();
EncodeBlock(
g,
node->blocks()[0],
{},
{},
true,
true,
use_external_data_format,
onnx_file_path);
}
if (node->kind() == ::c10::onnx::If) {
TORCH_INTERNAL_ASSERT(node->blocks().size() == 2);
auto then_branch = node_proto->add_attribute();
then_branch->set_name("then_branch");
then_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto true_g = then_branch->mutable_g();
EncodeBlock(
true_g,
node->blocks()[0],
{},
{},
true,
true,
use_external_data_format,
onnx_file_path);
auto else_branch = node_proto->add_attribute();
else_branch->set_name("else_branch");
else_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto false_g = else_branch->mutable_g();
EncodeBlock(
false_g,
node->blocks()[1],
{},
{},
true,
true,
use_external_data_format,
onnx_file_path);
}
}
void GraphEncoder::AddAttribute(
onnx::NodeProto* node_proto,
const jit::Symbol name,
const std::string& ref_attr_name,
const AttributeKind attr_kind) {
auto attr = node_proto->add_attribute();
TORCH_INTERNAL_ASSERT(name.is_attr());
attr->set_name(name.toUnqualString());
attr->set_ref_attr_name(ref_attr_name);
attr->set_type(ATenAttributeKindToOnnxAttributeType(attr_kind, name));
}
void GraphEncoder::AddAttribute(
onnx::NodeProto* node_proto,
const jit::Node* node,
const jit::Symbol name,
const bool use_external_data_format,
const std::string& onnx_file_path) {
auto createAttributeTensorName =
[](const onnx::NodeProto* node_proto,