-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapmgen.m
128 lines (109 loc) · 4.71 KB
/
apmgen.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
%Author: Zsolt T. Kosztyan Ph.D habil., University of Pannonia,
%Faculty of Economics, Department of Quantitative Methods
%----------------
%Calculate an optimal project structure matrix
%The algorithm is the implementation of Agile Project Management agent
%(APMa) by integer genetic algorithm
%----------------
%Output:
%PSM: An n by N+3 PSM=[DSM,TD,CD,EST] matrix, where
% DSM is an N by N upper triangular binary matrix of the calculated logic
% domain
% TD is an N by 1 column vector of task durations
% CD is an N by 1 column vector of cost demands
% EST is an N by 1 column vector of early start time of tasks
%----------------
%Inputs:
%PDM: PDM=[PEM,TD,CD] matrix (N by N+2),
%where PEM is an N by N upper triangular matrix of logic domain,
% TD is an N by 1 column vector of task durations
% CD is an N by 1 column vector of cost demands
%const: 3 element vector of [Ct,Cc,Cs] values, where
% Ct is the time constraint (max constraint)
% Cc is the cost constraint (max constraint)
% Cs is the score constraint (min constraint)
%typefcn: Type of target function
% 1=minTPT, 2=minTPC, 3=maxTPS, ~ composite
%----------------
%Usage:
%PSM=apmgen(PDM,const,typefcn)
%----------------
%Example:
%PDM=[triu(rand(10)*.5+.5),20*rand(10,1),30*rand(10,1)];
%const=[percentt(PDM,1,.9),percentc(PDM,1,.9),percents(PDM,.7)];
%typefcn=999; %let target function be a composite target function
%tic;PSM=apmgen(PDM,const,typefcn);toc
%----------------
%Prepositions and Requirements:
%1.)The logic domian must be an upper triangular matrix, where the matrix
%elements are between 0 to 1 interval.
%2.)At least one matrix element is lower than 1 and upper than 0. => There
%are at least one decision variable
%3.)The elements of Time and Cost Domains are positive real numbers.
function PSM=apmgen(PDM,const,typefcn)
global PEM P Q T C Ct Cc Cs Typ
%global variables:
% PEM is the input logic domain
% P is the score matrix of inclusion task dependencies/completions
%the logic domain (initially PEM=P)
% Q is the score matrix of exclusion task dependencies/completions.
%In this simulation Q=1-P
% T is the column vector of time demands (=the time domain)
% C is the column vector of cost demands (=the cost domain)
% Ct is the time constraint
% Cc is the cost constraint
% Cs is the score constraint
% Typ is the selection number of the target functions (see above)
%---Initialization of the global variables---
Typ=typefcn;
Ct=const(1);
Cc=const(2);
Cs=const(end);
N=size(PDM,1); %The number of activities
pem=triu(PDM(:,1:N)); %Only the upper triangle is considered
T=PDM(:,N+1); %N+1-th column in PDM matrix is the time domain
C=PDM(:,N+2); %N+2-th column in PDM matrix is the cost domain
PEM=pem;
P=pem;
Q=ones(N)-P; %Q=1-P
%---End of the initialization of the global variables---
n=numel(PEM(PEM>0&PEM<1)); %number of uncertainties =
% = number of variables in the genetic optimization
MinPopSize=100; %Minimal number of population
PopSize=min(max(1000,round((2^n)/100)),MinPopSize); %The population size
%depends on the number of uncertainties
%---Set of genetic algorithm (GA)---
% PopulationType:bitstring = This is a binary genetic algorithm, where, the
%every decision variables are 0 or 1.
% Display:off = There is no need any information to display
% PopulationSize:PopSize = The Population size in a parallel running is
%PopSize
% Vectorized:on and UseParallel:true parallelize the genetic algorithm
% Generations:100 and StallGenLimit:100 sets the maximal number of
%generations to 100
% TolCon:1e-6 means, that the GA will stop, if the given tolerance is
%reached
% CreationFcn:@createpem specifies createpem function when generating
%population.
options=gaoptimset('PopulationType','bitstring','Display','off',...
'PopulationSize',PopSize,'Vectorized','on','UseParallel',true,...
'Generations',100,'StallGenLimit',100,'TolCon',1e-6,...
'CreationFcn', @createpem);
%---End of setting GA---
%---Runing GA---
% @targetfcn: the target function (=targetfcn)
% n: the number of variables
% options: The set of options (see above).
%Note: Because of the bitstring population, every genes are 0 or 1 => There
%is no need upper and lower bounds. Nonlinear constrants are not allowed
%when using bitstring population
chromosome=ga(@targetfcn,n,[],[],[],[],[],[],[],[],options);
%---End of runing GA---
%---Start of output formatting---
PSM=updatepem(chromosome); %Now PSM only a binary DSM matrix
[~,EST]=tptfast(PSM,T); %Determine EST
PSM=[PSM,T,C,EST]; %The final PSM includes the original time and cost
%domains and the column vector of earlies start time
%---End of output formatting---
PSM(diag(PSM)==0,:)=0; %All excluded tasks dependencies/time demands/
PSM(:,diag(PSM)==0)=0; %cost demands are erased from the PSM matrix