-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapmgenpr.m
143 lines (121 loc) · 5.36 KB
/
apmgenpr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
%Author: Zsolt T. Kosztyán Ph.D habil., University of Pannonia,
%Faculty of Economics, Department of Quantitative Methods
%----------------
%Calculate an optimal project structure matrix and pareto-optimal resource
%allocation
%The algorithm is the implementation of Agile Project Management agent
%(APMa) by integer genetic algorithm and a multi-genetic algorithm to
%specify pareto-optimal resource allocation
%----------------
%Output:
%PSM: An n by N+2+nR+1 PSM=[DSM,TD,CD,RD,SST] matrix, where
% DSM is an N by N upper triangular binary matrix of the calculated logic
% domain
% TD is an N by 1 column vector of task durations
% CD is an N by 1 column vector of cost demands
% RD is an N by nR matrix of resource demands
% SST is an N by 1 column vector of scheduled start time of tasks
%----------------
%Inputs:
%PDM: PDM=[PEM,TD,CD,RD] matrix (N by N+2+nR),
%where PEM is an N by N upper triangular matrix of logic domain,
% TD is an N by 1 column vector of task durations
% CD is an N by 1 column vector of cost demands
% RD is an N by nR matrix of resource demands
%const: 3 element vector of [Ct,Cc,Cs] values, where
% Ct is the time constraint (max constraint)
% Cc is the cost constraint (max constraint)
% Cs is the score constraint (min constraint)
%typefcn: Type of target function
% 1=minTPT, 2=minTPC, 3=maxTPS, ~ composite
%----------------
%Usage:
%PSM=apmgenpr(PDM,const,typefcn)
%----------------
%Example:
%PDM=[triu(rand(10)*0.5+0.5),20*rand(10,1),30*rand(10,1),5*rand(10,3)];
%const=[percentt(PDM,1,.9),percentc(PDM,1,.9),percents(PDM,.7)];
%typefcn=999; %let target function be a composite target function
%tic;PSM=apmgenpr(PDM,const,typefcn);toc
%----------------
%Prepositions and Requirements:
%1.)The logic domian must be an upper triangular matrix, where the matrix
%elements are between 0 to 1 interval.
%2.)At least one matrix element is lower than 1 and upper than 0. => There
%are at least one decision variable
%3.)The elements of Time/Cost/Resource Domains are positive real numbers.
function PSM=apmgenpr(PDM,const,typefcn)
global PEM P Q T C R Ct Cc Cs Typ
%global values:
% PEM is the input logic domain
% P is the score matrix of inclusion task dependencies/completions
%the logic domain (initially PEM=P)
% Q is the score matrix of exclusion task dependencies/completions.
%In this simulation Q=1-P
% T is the column vector of time demands (=the time domain)
% C is the column vector of cost demands (=the cost domain)
% R is the matrix of resource demands (=the resource domain)
% Ct is the time constraint
% Cc is the cost constraint
% Cs is the score constraint
% Typ is the selection number of the target functions (see above)
%---Initialization of the global values---
Typ=typefcn;
Ct=const(1);
Cc=const(2);
Cs=const(end);
N=size(PDM,1); %The number of activities
pem=triu(PDM(:,1:N)); %Only the upper triangle is considered
T=PDM(:,N+1); %N+1-th column in PDM matrix is the time domain
C=PDM(:,N+2); %N+2-th column in PDM matrix is the cost domain
R=PDM(:,N+3:end); %N+3..N+3+nR-th columns in PDM matrix is the
%resource domain
PEM=pem;
P=pem;
Q=ones(size(pem,1))-P; %Q=1-P
%---End of the initialization of the global values---
n=numel(PEM(PEM>0&PEM<1)); %number of uncertainties =
% = number of variables in the genetic optimization
MinPopSize=100; %Minimal number of population
PopSize=min(max(1000,round((2^n)/100)),MinPopSize); %The population size
%depends on the number of uncertainties
%---Set of genetic algorithm (GA)---
% PopulationType:bitstring = This is a binary genetic algorithm, where, the
%every decision variables are 0 or 1.
% Display:off = There is no need any information to display
% PopulationSize:PopSize = The Population size in a parallel running is
%PopSize
% Vectorized:on and UseParallel:true parallelize the genetic algorithm
% Generations:100 and StallGenLimit:100 sets the maximal number of
%generations to 100
% TolCon:1e-6 means, that the GA will stop, if the given tolerance is
%reached
% CreationFcn:@createpem specifies createpem function when generating
%population.
options=gaoptimset('PopulationType','bitstring','Display','off',...
'PopulationSize',PopSize,'Vectorized','on','UseParallel',true,...
'Generations',100,'StallGenLimit',100,'TolCon',1e-6,...
'CreationFcn', @createpem);
%---End of setting GA---
%---Runing GA---
% @targetfcn: the target function (=targetfcn)
% n: the number of variables
% options: The set of options (see above).
%Note: Because of the bitstring population, every genes are 0 or 1 => There
%is no need upper and lower bounds. Nonlinear constrants are not allowed
%when using bitstring population
chromosome=ga(@targetfcn,n,[],[],[],[],[],[],[],[],options);
%---End of runing GA---
PSM=updatepem(chromosome); %Now PSM only a bibary DSM matrix
PSM(diag(PSM)==0,:)=0; %All excluded tasks dependencies
PSM(:,diag(PSM)==0)=0; %is erased from the PSM matrix
%---Start of Pareto Optimizing---
SST=multires_solve(PSM,T,R); %Specify an SST for a Pareto-Optimal
%resource allocation
%---End of Pareto Optimizing---
%---Start of output formatting---
PSM=[PSM,T,C,R,SST];%The final PSM includes the original time/cost/resource
%domains and the column vector of scheduled start time
%---End of output formatting---
PSM(diag(PSM)==0,:)=0; %All excluded tasks dependencies/time/cost/resource
PSM(:,diag(PSM)==0)=0; %demands are erased from the PSM matrix