-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhpmgendq.m
170 lines (146 loc) · 6.78 KB
/
hpmgendq.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
%Author: Zsolt T. Kosztyán Ph.D habil., University of Pannonia,
%Faculty of Economics, Department of Quantitative Methods
%----------------
%Calculate an optimal project structure matrix for hybrid discrete
%time-quality-cost trade-off problem (HDTQCTP)
%The algorithm is the implementation of Hybrid Project Management agent
%(HPMa) by hybrid genetic algorithm
%----------------
%Output:
%PSM: An n by N+4 PSM=[DSM,TD,CD,QD,EST] matrix, where
% DSM is an N by N upper triangular binary matrix of the calculated logic
% domain
% TD is an N by 1 column vector of task durations
% CD is an N by 1 column vector of cost demands
% QD is an N by 1 column vector of quality parameters
% EST is an N by 1 column vector of early start time of tasks
%----------------
%Inputs: %PDM: PDM=[PEM,TD,CD,QD] matrix (N by N+3w),
%where PEM is an N by N upper triangular matrix of logic domain,
% TD is an N by w matrix of task durations
% CD is an N by w matrix of cost demands
% QD is an N by w matrix of quality parameters
%const: 4 element row vector of [Ct,Cc,Cq,Cs] values, where
% Ct is the time constraint (max constraint)
% Cc is the cost constraint (max constraint)
% Cq is the quality constraint (min constraint)
% Cs is the score constraint (min constraint)
%typefcn: Type of target function
% 0=maxTPQ, 1=minTPT, 2=minTPC, 3=maxTPS, ~ composite
%----------------
%Usage:
%PSM=hpmgendq(PDM,const,typefcn)
%----------------
%Example:
%PDM=[triu(rand(10)*.5+.5),20*rand(10,3),30*rand(10,3)];
%const=[percentt(PDM,3,.9),percentc(PDM,3,.9),...
% percentq(PDM,3,.7),percents(PDM,.7)];
%typefcn=999; %let target function be a composite target function
%tic;PSM=hpmgendq(PDM,const,typefcn);toc
%----------------
%Prepositions and Requirements:
%1.)The logic domian must be an upper triangular matrix, where the matrix
%elements are between 0 to 1 interval.
%2.)At least one matrix element is lower than 1 and upper than 0. => There
%are at least one decision variable
%3.)The number of modes(w) is a positive integer
%4.)The elements of Time/Cost/Quality Domains are positive real numbers.
%5.)Usually a monotonity are assumed, which, means: if tk,i<tk,j =>
%ck,i>=ck,j and qk,i<=qk,j, where 1<=k<=N is the k-th task, 1<=i,j<=w are
%the selected modes. Nevertheless, this assumption is not required in this
%simulation.
function PSM=hpmgendq(PDM,const,typefcn)
global PEM P Q T C q Ct Cc Cq Cs Typ QD
%global values:
% PEM is the input logic domain
% P is the score matrix of inclusion task dependencies/completions
%the logic domain (initially PEM=P)
% Q is the score matrix of exclusion task dependencies/completions.
%In this simulation Q=1-P
% T is the N by w matrix of time demands (=the time domain)
% C is the N by w matrix of cost demands (=the cost domain)
% q is the N by w matrix of quality demands (=the quality domain)
% Ct is the time constraint
% Cc is the cost constraint
% Cq is the quality constraint
% Cs is the score constraint
% Typ is the selection number of the target functions (see above)
%---Initialization of the global values---
Typ=typefcn;
Ct=const(1);
Cc=const(2);
Cq=const(3);
Cs=const(end);
N=size(PDM,1); %The number of activities
M=size(PDM,2); %=N+2*w
w=(M-N)/3; %Number of modes
pem=triu(PDM(:,1:N)); %only the upper triangle will be considered
T=PDM(:,N+1:N+w); %N+1..N+w-th columns in PDM matrix is the time domain
C=PDM(:,N+1+w:N+2*w); %N+w+1..N+2*w-th columns in PDM matrix is the cost
%domain
q=PDM(:,N+1+2*w:N+3*w); %N+2*w+1..N+3*w-th columns in PDM matrix is the
%quality domain
QD=q;
PEM=pem;
P=pem;
Q=ones(N)-P; %Q=1-P
%---End of the initialization of the global values---
n=numel(PEM(PEM>0&PEM<1)); %Number of uncertainties
MinPopSize=100; %Minimal number of population
PopSize=min(max(1000,round((2^n)/100)),MinPopSize); %The population size
%depends on the number of uncertainties
%---Set of genetic algorithm (GA)---
chromosomedq=initpopdq(PopSize); %Specify the initial population
% Display:off = There is no need any information to display
% PopulationSize:PopSize = The Population size in a parallel running is
%PopSize
% Vectorized:on and UseParallel:true parallelize the genetic algorithm
% Generations:100 and StallGenLimit:100 sets the maximal number of
%generations to 100
% TolCon:1e-6 means, that the GA will stop, if the given tolerance is
%reached
% InitialPopulation:chromosomedq chromosomedq predefines set of chromosomes
%are used as an initial population
% CreationFcn:@createpemdq specifies createpemdq function when generating
%population.
% HybridFcn:@fmincon specifies a hybrid function which is used after
%running GA.
% CrossoverFcn:@crossoverhybriddq specifies a unique crossoverhybridd
%crossover function, which recombines two PSM=[DSM,MODES] matrices
% MutationFcn:@mutationadaptfeasible randomly generates directions that are
%adaptive with respect to the last successful or unsuccessful generation
% SelectionFcn:{@selectiontournament,4} Tournament selection chooses each
%parent by choosing Tournament size players at random and then choosing the
%best individual out of that set to be a parent. Tournament size is 4.
options=gaoptimset('Display','off','PopulationSize',PopSize,...
'Vectorized','on','UseParallel',true,'Generations',100,...
'StallGenLimit',100,'TolCon',1e-6,'InitialPopulation',chromosomedq,...
'CreationFcn',@createpemdq,'HybridFcn',@fmincon,...
'CrossoverFcn',@crossoverhybriddq,...
'MutationFcn',@mutationadaptfeasible,...
'SelectionFcn',{@selectiontournament,4});
LB=[zeros(1,numel(PEM(PEM>0&PEM<1))),ones(1,N)]; %Lower Bound
UB=[ones(1,numel(PEM(PEM>0&PEM<1))),ones(1,N)*w];%Upper Bound
%---End of setting GA---
%---Runing GA---
% @targetfcndq: the target function (=targetfcndq)
% n+N: the number of variables (n=number of uncertainties + N=number of
%activities
% LB,UB: Lower/Upper Bounds
% @constrainrtpardq: The nonlinear constraint function
% options: The set of options (see above).
%Note: Despite binary and integer values have to be seeked, in order to
%apply custom creation, crossover and hybrid functions the values
%considered as rounded continuous values
chromosome=ga(@targetfcndq,n+N,[],[],[],[],LB,UB,...
@constrainrtpardq,options);
%---End of runing GA---
%---Start of output formatting---
PSM=updatepemd(chromosome); %PSM=[DSM,MODES] = Logic Domain and the vector
%of the selected modes
PSM(diag(PSM)==0,:)=0; %All excluded tasks dependencies/time demands/
PSM(:,diag(PSM)==0)=0; %cost demands are erased from the PSM matrix
PSM=pmtopsmq(PSM,T,C,q); %The output PSM = [DSM,TD,CD,QD,EST]
PSM(diag(PSM)==0,:)=0; %All excluded tasks dependencies/time demands/
PSM(:,diag(PSM)==0)=0; %cost demands are erased from the PSM matrix
%---End of output formatting---