-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscpnet.py
330 lines (271 loc) · 13.1 KB
/
scpnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import copy
import os
import numpy as np
import torch
from PIL import Image
from torch.cuda.amp import autocast # type: ignore
from torchvision import transforms
from config import cfg
from log import logger
from model import SCPNet, load_clip_model
from utils import COCO_missing_val_dataset, CocoDetection, ModelEma, get_ema_co
from randaugment import RandAugment
class WeakStrongDataset(torch.utils.data.Dataset): # type: ignore
def __init__(self,
root,
annFile,
transform,
target_transform=None,
class_num: int = -1):
self.root = root
with open(annFile, 'r') as f:
names = f.readlines()
self.name = names
self.transform = transform
self.class_num = class_num
self.target_transform = target_transform
self.strong_transform: transforms.Compose = copy.deepcopy(
transform) # type: ignore
self.strong_transform.transforms.insert(0,
RandAugment(3,
5)) # type: ignore
def __getitem__(self, index):
name = self.name[index]
path = name.strip('\n').split(',')[0]
num = name.strip('\n').split(',')[1]
num = num.strip(' ').split(' ')
num = np.array([int(i) for i in num])
label = np.zeros([self.class_num])
label[num] = 1
label = torch.tensor(label, dtype=torch.long)
img = Image.open(os.path.join(self.root, path)).convert('RGB')
img_w = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target) # type: ignore # noqa
assert (self.target_transform is None)
return [index, img_w,
self.transform(img),
self.strong_transform(img)], label
def __len__(self):
return len(self.name)
def build_weak_strong_dataset(train_preprocess,
val_preprocess,
pin_memory=True):
if "coco" in cfg.data:
return build_coco_weak_strong_dataset(train_preprocess, val_preprocess)
elif "nuswide" in cfg.data:
return build_nuswide_weak_strong_dataset(train_preprocess,
val_preprocess)
elif "voc" in cfg.data:
return build_voc_weak_strong_dataset(train_preprocess, val_preprocess)
elif "cub" in cfg.data:
return build_cub_weak_strong_dataset(train_preprocess, val_preprocess)
else:
assert (False)
def build_coco_weak_strong_dataset(train_preprocess, val_preprocess):
# COCO Data loading
instances_path_val = os.path.join(cfg.data,
'annotations/instances_val2014.json')
# instances_path_train = os.path.join(args.data, 'annotations/instances_train2014.json')
instances_path_train = cfg.dataset
data_path_val = f'{cfg.data}/val2014' # args.data
data_path_train = f'{cfg.data}/train2014' # args.data
val_dataset = CocoDetection(data_path_val, instances_path_val,
val_preprocess)
train_dataset = WeakStrongDataset(data_path_train,
instances_path_train,
train_preprocess,
class_num=cfg.num_classes)
# Pytorch Data loader
train_loader = torch.utils.data.DataLoader( # type: ignore
train_dataset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=cfg.workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader( # type: ignore
val_dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.workers,
pin_memory=False)
return [train_loader, val_loader]
def build_nuswide_weak_strong_dataset(train_preprocess, val_preprocess):
# Nus_wide Data loading
instances_path_train = cfg.train_dataset
instances_path_val = cfg.val_dataset
data_path_val = f'{cfg.data}images' # args.data
data_path_train = f'{cfg.data}images' # args.data
val_dataset = COCO_missing_val_dataset(data_path_val,
instances_path_val,
val_preprocess,
class_num=cfg.num_classes)
train_dataset = WeakStrongDataset(data_path_train,
instances_path_train,
train_preprocess,
class_num=cfg.num_classes)
# Pytorch Data loader
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=cfg.workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.workers,
pin_memory=False)
return [train_loader, val_loader]
def build_voc_weak_strong_dataset(train_preprocess, val_preprocess):
# VOC Data loading
instances_path_train = cfg.train_dataset
instances_path_val = cfg.val_dataset
data_path_val = f'{cfg.data}VOC2012/JPEGImages' # args.data
data_path_train = f'{cfg.data}VOC2012/JPEGImages' # args.data
val_dataset = COCO_missing_val_dataset(data_path_val,
instances_path_val,
val_preprocess,
class_num=cfg.num_classes)
train_dataset = WeakStrongDataset(data_path_train,
instances_path_train,
train_preprocess,
class_num=cfg.num_classes)
# Pytorch Data loader
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=cfg.workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.workers,
pin_memory=False)
return [train_loader, val_loader]
def build_cub_weak_strong_dataset(train_preprocess, val_preprocess):
# CUB Data loading
instances_path_train = cfg.train_dataset
instances_path_val = cfg.val_dataset
data_path_val = f'{cfg.data}CUB_200_2011/images' # args.data
data_path_train = f'{cfg.data}CUB_200_2011/images' # args.data
val_dataset = COCO_missing_val_dataset(data_path_val,
instances_path_val,
val_preprocess,
class_num=cfg.num_classes)
train_dataset = WeakStrongDataset(data_path_train,
instances_path_train,
train_preprocess,
class_num=cfg.num_classes)
# Pytorch Data loader
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=cfg.workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.workers,
pin_memory=False)
return [train_loader, val_loader]
class SCPNetTrainer():
def __init__(self) -> None:
super().__init__()
clip_model, _ = load_clip_model()
# image_size = clip_model.visual.input_resolution
image_size = cfg.image_size
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))
train_preprocess = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(image_size),
transforms.ToTensor(), normalize
])
val_preprocess = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(), normalize
])
train_loader, val_loader = build_weak_strong_dataset(
train_preprocess, # type: ignore
val_preprocess)
self.train_loader = train_loader
self.val_loader = val_loader
classnames = val_loader.dataset.labels()
assert (len(classnames) == cfg.num_classes)
self.model = SCPNet(classnames, clip_model)
self.relation = self.model.relation
self.classnames = classnames
for name, param in self.model.named_parameters():
if "text_encoder" in name:
param.requires_grad_(False)
self.model.cuda()
ema_co = get_ema_co()
self.ema = ModelEma(self.model, ema_co) # 0.9997^641=0.82
self.selected_label = torch.zeros(
(len(self.train_loader.dataset), cfg.num_classes),
dtype=torch.long,
)
self.selected_label = self.selected_label.cuda()
self.classwise_acc = torch.zeros((cfg.num_classes, )).cuda()
self.classwise_acc[:] = 1/cfg.num_classes
def consistency_loss(self, logits_s, logits_w, y_lb):
logits_w = logits_w.detach()
pseudo_label = torch.sigmoid(logits_w)
pseudo_label_s = torch.sigmoid(logits_s)
relation_p = pseudo_label @ self.relation.cuda().t()
max_probs, max_idx = torch.topk(pseudo_label, cfg.hard_k, dim=-1)
threhold = cfg.p_cutoff * (self.classwise_acc[max_idx] /
(2. - self.classwise_acc[max_idx]))
mask = max_probs.ge(threhold).float().sum(dim=1) >= 1 # convex
labels = torch.zeros((len(logits_s), cfg.num_classes),
dtype=torch.long)
for i, idx in enumerate(max_idx):
labels[i][idx] = 1
labels_mask = pseudo_label < cfg.p_cutoff * (
self.classwise_acc / (2. - self.classwise_acc))
labels[labels_mask] = 0
labels = torch.logical_or(labels, y_lb.cpu()).type(torch.long)
labels = labels.cuda()
xs_pos = pseudo_label_s
xs_neg = 1 - pseudo_label_s
los_pos = labels * torch.log(xs_pos.clamp(min=1e-8))
los_neg = (1 - labels) * torch.log(xs_neg.clamp(min=1e-8))
loss = (los_pos + los_neg) * mask.reshape(-1, 1)
loss_kl = (relation_p * torch.log(xs_pos.clamp(min=1e-8)) + (1 - relation_p) * torch.log(xs_neg.clamp(min=1e-8))) * mask.reshape(-1, 1)
return -loss.sum() - cfg.kl_lambda * loss_kl.sum(), labels
def train(self, input, target, criterion, epoch, epoch_i) -> torch.Tensor:
x_ulb_idx, x_lb, x_ulb_w, x_ulb_s = input
y_lb = target
num_lb = x_lb.shape[0]
num_ulb = x_ulb_w.shape[0]
assert num_ulb == x_ulb_s.shape[0]
x_lb, x_ulb_w, x_ulb_s = x_lb.cuda(), x_ulb_w.cuda(), x_ulb_s.cuda()
x_ulb_idx = x_ulb_idx.cuda()
pseudo_counter = self.selected_label.sum(dim=0)
max_v = pseudo_counter.max().item()
sum_v = pseudo_counter.sum().item()
if max_v >= 1: # not all(5w) -1
for i in range(cfg.num_classes):
self.classwise_acc[i] = max(pseudo_counter[i] / max(
max_v,
cfg.hard_k * len(self.selected_label) - sum_v), 1/cfg.num_classes)
inputs = torch.cat((x_lb, x_ulb_w, x_ulb_s))
# inference and calculate sup/unsup losses
with autocast():
logits = self.model(inputs)
logits_x_lb = logits[:num_lb]
logits_x_ulb_w, logits_x_ulb_s = logits[num_lb:].chunk(2)
logits_x_lb = logits_x_lb.float()
logits_x_ulb_w, logits_x_ulb_s = logits_x_ulb_w.float(
), logits_x_ulb_s.float()
sup_loss, _ = criterion(logits_x_lb, y_lb, epoch)
unsup_loss, labels = self.consistency_loss(logits_x_ulb_s,
logits_x_ulb_w, y_lb)
assert (labels is not None)
select_mask = labels.sum(dim=1) >= 1
if x_ulb_idx[select_mask].nelement() != 0:
self.selected_label[
x_ulb_idx[select_mask]] = labels[select_mask]
total_loss = sup_loss + cfg.lambda_u * unsup_loss
return total_loss