From cf1f368fbee0814f67552998004ac60c7e1578d5 Mon Sep 17 00:00:00 2001 From: Jan Genoe Date: Thu, 10 Oct 2024 00:08:59 +0200 Subject: [PATCH] E in again --- ToegepasteAnalogeElektronica/Filters.ipynb | 715 ++++++++---------- ToegepasteAnalogeElektronica/Klasse-C.ipynb | 7 + ToegepasteAnalogeElektronica/Klasse-E.ipynb | 10 +- ToegepasteAnalogeElektronica/Klasse-F.ipynb | 12 + .../SmithKaartOefening8.ipynb | 6 + ToegepasteAnalogeElektronica/_tocpdf.yml | 4 +- 6 files changed, 351 insertions(+), 403 deletions(-) diff --git a/ToegepasteAnalogeElektronica/Filters.ipynb b/ToegepasteAnalogeElektronica/Filters.ipynb index 44874a98a..f6a5dde6a 100644 --- a/ToegepasteAnalogeElektronica/Filters.ipynb +++ b/ToegepasteAnalogeElektronica/Filters.ipynb @@ -799,6 +799,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "notes" }, @@ -808,25 +814,16 @@ "Om dit basisblok in detail te berekenen schrijven we dit eerst in functie van de 2 impedanties $Z_1$ en $Z_2$ (zie {numref}`fig2`)." ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Basisblok in functie van de impedanties" - ] - }, { "cell_type": "code", "execution_count": 25, "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Basisblok in functie van de impedanties" + }, + "editable": true, "execution": { "iopub.execute_input": "2023-11-12T16:13:26.973457Z", "iopub.status.busy": "2023-11-12T16:13:26.972461Z", @@ -840,6 +837,9 @@ "name": "fig2" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -1281,6 +1281,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -1311,25 +1317,16 @@ "wat bij voldoende lage frequentie $ V_{out} \\approx -\\frac{R_2}{R_1 } V_{in} $ geeft " ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### eerste orde laagdoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 3, "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "eerste orde laagdoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2023-11-12T22:44:26.449084Z", "iopub.status.busy": "2023-11-12T22:44:26.449084Z", @@ -1343,6 +1340,9 @@ "name": "fig3" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -1869,6 +1869,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -1880,25 +1886,16 @@ "$$ V_{out} \\approx -\\frac{C_1}{ C_2} \\frac{j \\omega }{j \\omega -p_1} V_{in} $$" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### eerste orde hoogdoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 29, "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "eerste orde hoogdoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2023-11-12T16:15:50.418450Z", "iopub.status.busy": "2023-11-12T16:15:50.418450Z", @@ -1912,6 +1909,9 @@ "name": "fig4" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -2484,6 +2484,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -2497,25 +2503,16 @@ "$$ V_{out*} = - \\frac{1}{a_2 (j \\omega)^2 + a_1 (j \\omega) +a_0} V_{in} $$" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Bovenste gedeelte van het BiQuad circuit" - ] - }, { "cell_type": "code", "execution_count": 57, "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Bovenste gedeelte van het BiQuad circuit" + }, + "editable": true, "execution": { "iopub.execute_input": "2023-11-12T16:48:29.414103Z", "iopub.status.busy": "2023-11-12T16:48:29.413077Z", @@ -2529,6 +2526,9 @@ "name": "fig5" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -3619,6 +3619,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -3630,25 +3636,15 @@ "Het hierboven aangegeven circuit kunnen we verder uitbreiden om ook nog 2 (complexen) nullen toe te voegen. Hiervoor combineren we de spanning op 3 knopen van het circuit in {numref}`fig5` , namelijk $V_{in}$, $V_{*}$ en$V_{out*}$. Dit geeft dan het circuit in {numref}`fig6` ." ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Het volledige BiQuad circuit" - ] - }, { "cell_type": "code", "execution_count": 54, "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Het volledige BiQuad circuit" + }, "editable": true, "execution": { "iopub.execute_input": "2023-11-12T16:47:40.575922Z", @@ -3664,7 +3660,7 @@ } }, "slideshow": { - "slide_type": "" + "slide_type": "slide" }, "tags": [] }, @@ -5076,6 +5072,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -5085,25 +5087,15 @@ "#### Sallen en Key Circuit" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Sallen en Key laagdoorlaat circuit" - ] - }, { "cell_type": "code", "execution_count": 3, "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Sallen en Key laagdoorlaat circuit" + }, "editable": true, "execution": { "iopub.execute_input": "2023-11-12T21:27:58.614659Z", @@ -5119,7 +5111,7 @@ } }, "slideshow": { - "slide_type": "" + "slide_type": "slide" }, "tags": [] }, @@ -6008,6 +6000,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "hide_input": true, "slideshow": { "slide_type": "slide" @@ -6026,21 +6024,6 @@ "$a_n$ en $b_n$ zijn de coeficienten van de veeltermen in de transferfunktie. Voor deze oefening zijn deze coeficienten:" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Amplitude en fase derde orde Butterworth laagdoorlaatfilter(1 MHz)" - ] - }, { "cell_type": "code", "execution_count": 7, @@ -6049,6 +6032,12 @@ "end_time": "2018-12-17T23:26:26.771244Z", "start_time": "2018-12-17T23:26:26.021162Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Amplitude en fase derde orde Butterworth laagdoorlaatfilter(1 MHz)" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:28:18.382273Z", "iopub.status.busy": "2022-10-15T21:28:18.382273Z", @@ -6063,6 +6052,9 @@ "name": "fig8" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -6085,21 +6077,6 @@ "freqs_resp([[b3,a3]],4,8,Printcoef=True,ShowGraf=False);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Amplitude en fase derde orde Butterworth laagdoorlaatfilter(1 MHz)" - ] - }, { "cell_type": "code", "execution_count": 6, @@ -6108,6 +6085,12 @@ "end_time": "2018-12-17T23:26:26.771244Z", "start_time": "2018-12-17T23:26:26.021162Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Amplitude en fase derde orde Butterworth laagdoorlaatfilter(1 MHz)" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:27:59.874323Z", "iopub.status.busy": "2022-10-15T21:27:59.873323Z", @@ -6125,6 +6108,9 @@ "name": "fig8" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -6186,6 +6172,12 @@ "end_time": "2018-11-12T14:32:41.564415Z", "start_time": "2018-11-12T14:32:41.408137Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:41:56.118025Z", "iopub.status.busy": "2022-10-15T21:41:56.117060Z", @@ -6197,6 +6189,9 @@ "jupyter": { "source_hidden": true }, + "slideshow": { + "slide_type": "" + }, "tags": [] }, "outputs": [ @@ -6217,21 +6212,6 @@ "polen_nullen(z3,p3,[[1e6,1e6,0]],Printcoef=True,ShowGraf=False);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Polen derde orde Butterworth laagdoorlaatfilter(1 MHz)" - ] - }, { "cell_type": "code", "execution_count": 48, @@ -6240,6 +6220,12 @@ "end_time": "2018-11-12T14:32:41.564415Z", "start_time": "2018-11-12T14:32:41.408137Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Polen derde orde Butterworth laagdoorlaatfilter(1 MHz)" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:41:49.107960Z", "iopub.status.busy": "2022-10-15T21:41:49.107960Z", @@ -6257,6 +6243,9 @@ "name": "fig9" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -6281,6 +6270,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "hide_input": true, "slideshow": { "slide_type": "skip" @@ -6300,28 +6295,19 @@ ] }, { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Opsplitsing derde orde Butterworth laagdoorlaatfilter" - ] - }, - { - "cell_type": "code", - "execution_count": 8, + "cell_type": "code", + "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2018-11-12T14:32:58.256654Z", "start_time": "2018-11-12T14:32:57.756578Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Opsplitsing derde orde Butterworth laagdoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2020-10-17T20:53:19.818129Z", "iopub.status.busy": "2020-10-17T20:53:19.818129Z", @@ -6339,6 +6325,9 @@ "name": "fig10" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -6364,6 +6353,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -6373,21 +6368,6 @@ "De onderstaande figuur bekijkt deze opsplitsing in detail rond de afsnijfrequentie. Hier merken we dat de overshoot in de 2de orde filter H1(s) voor een deel het sneller dalen van de eerste orde filter H2(s) compenseert" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Detail rond de afsnijfrequentie" - ] - }, { "cell_type": "code", "execution_count": 9, @@ -6396,6 +6376,12 @@ "end_time": "2018-11-12T14:34:20.397482Z", "start_time": "2018-11-12T14:34:19.975580Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Detail rond de afsnijfrequentie" + }, + "editable": true, "execution": { "iopub.execute_input": "2020-10-17T20:53:25.622825Z", "iopub.status.busy": "2020-10-17T20:53:25.622825Z", @@ -6410,6 +6396,9 @@ "name": "fig11" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -6430,21 +6419,6 @@ "freqs_resp([[b3,a3],h1s,h2s],5.6,6.2,lowDB=-10,legend=[\"H\",\"H1: 2de orde filter\",\"H2: 1ste orde filter\"],Printcoef=False)" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Opsplitsing in de bouwblokken H1 en H2" - ] - }, { "cell_type": "code", "execution_count": 6, @@ -6453,6 +6427,11 @@ "end_time": "2018-10-29T15:39:46.614969Z", "start_time": "2018-10-29T15:39:46.521192Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Opsplitsing in de bouwblokken H1 en H2" + }, "editable": true, "execution": { "iopub.execute_input": "2023-11-12T21:31:49.188672Z", @@ -6468,7 +6447,7 @@ } }, "slideshow": { - "slide_type": "" + "slide_type": "slide" }, "tags": [] }, @@ -6726,25 +6705,15 @@ " d.add(dsp.Arrow('right', xy=h2.E, l=d.unit/2))" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### implementatie tweede orde filter H1" - ] - }, { "cell_type": "code", "execution_count": 82, "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "implementatie tweede orde filter H1" + }, "editable": true, "execution": { "iopub.execute_input": "2023-11-12T21:12:02.588473Z", @@ -6760,7 +6729,7 @@ } }, "slideshow": { - "slide_type": "" + "slide_type": "slide" }, "tags": [] }, @@ -7503,6 +7472,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -7512,21 +7487,6 @@ "De implementatie van H2 kan er in dit geval als het volgt uitzien met R1= R2= 9.947 k$\\Omega$ en C2 = 16pF" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### implementatie eerste orde filter H2" - ] - }, { "cell_type": "code", "execution_count": 4, @@ -7535,6 +7495,11 @@ "end_time": "2018-10-30T09:01:58.234523Z", "start_time": "2018-10-30T09:01:58.085815Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "implementatie eerste orde filter H2" + }, "editable": true, "execution": { "iopub.execute_input": "2023-11-12T22:45:25.138920Z", @@ -7550,7 +7515,7 @@ } }, "slideshow": { - "slide_type": "" + "slide_type": "slide" }, "tags": [] }, @@ -8290,6 +8255,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -8299,21 +8270,6 @@ "### Butterworth laagdoorlaatfilter van de 5de orde" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Amplitude en fase vijfde orde Butterworth laagdoorlaatfilter(1 MHz)" - ] - }, { "cell_type": "code", "execution_count": 46, @@ -8322,6 +8278,12 @@ "end_time": "2018-12-17T23:25:53.892723Z", "start_time": "2018-12-17T23:25:53.252037Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Amplitude en fase vijfde orde Butterworth laagdoorlaatfilter(1 MHz)" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:41:11.879250Z", "iopub.status.busy": "2022-10-15T21:41:11.879250Z", @@ -8339,6 +8301,9 @@ "name": "fig15" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -8363,21 +8328,6 @@ "freqs_resp([[b5,a5]],4,8,Printcoef=True,ShowGraf=False);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Amplitude en fase vijfde orde Butterworth laagdoorlaatfilter(1 MHz)" - ] - }, { "cell_type": "code", "execution_count": 47, @@ -8386,6 +8336,12 @@ "end_time": "2018-12-17T23:25:53.892723Z", "start_time": "2018-12-17T23:25:53.252037Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Amplitude en fase vijfde orde Butterworth laagdoorlaatfilter(1 MHz)" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:41:27.456566Z", "iopub.status.busy": "2022-10-15T21:41:27.455561Z", @@ -8397,6 +8353,9 @@ "jupyter": { "source_hidden": true }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -8418,21 +8377,6 @@ "freqs_resp([[b5,a5]],4,8,Printcoef=False,ShowGraf=True);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Polen vijfde orde Butterworth laagdoorlaatfilter (1 MHz)" - ] - }, { "cell_type": "code", "execution_count": 45, @@ -8441,6 +8385,12 @@ "end_time": "2018-11-12T14:36:16.809308Z", "start_time": "2018-11-12T14:36:16.653039Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Polen vijfde orde Butterworth laagdoorlaatfilter (1 MHz)" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:40:47.147894Z", "iopub.status.busy": "2022-10-15T21:40:47.146847Z", @@ -8451,6 +8401,9 @@ "jupyter": { "source_hidden": true }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -8473,21 +8426,6 @@ "polen_nullen(z5,p5,[[1e6,1e6,0]],Printcoef=True,ShowGraf=False);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Polen vijfde orde Butterworth laagdoorlaatfilter (1 MHz)" - ] - }, { "cell_type": "code", "execution_count": 44, @@ -8496,6 +8434,12 @@ "end_time": "2018-11-12T14:36:16.809308Z", "start_time": "2018-11-12T14:36:16.653039Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Polen vijfde orde Butterworth laagdoorlaatfilter (1 MHz)" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:40:40.752093Z", "iopub.status.busy": "2022-10-15T21:40:40.752093Z", @@ -8512,6 +8456,9 @@ "name": "fig16" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -8533,21 +8480,6 @@ "polen_nullen(z5,p5,[[1e6,1e6,0]],Printcoef=False,ShowGraf=True);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Opsplitsing in 3 transferfunkties" - ] - }, { "cell_type": "code", "execution_count": 15, @@ -8556,6 +8488,12 @@ "end_time": "2018-11-12T14:36:24.065197Z", "start_time": "2018-11-12T14:36:23.518572Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Opsplitsing in 3 transferfunkties" + }, + "editable": true, "execution": { "iopub.execute_input": "2020-10-17T20:55:29.793594Z", "iopub.status.busy": "2020-10-17T20:55:29.792596Z", @@ -8572,6 +8510,9 @@ "name": "fig17" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -8595,21 +8536,6 @@ "freqs_resp([[b5,a5],h1s,h2s,h3s],4,8,legend=[\"H\",\"H1: 2de orde filter\",\"H2: 2de orde filter\",\"H3: 1ste orde filter\"],Printcoef=False);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Hardware implementatie in 3 building blocks" - ] - }, { "cell_type": "code", "execution_count": 7, @@ -8618,6 +8544,11 @@ "end_time": "2018-10-29T15:41:00.414966Z", "start_time": "2018-10-29T15:41:00.305580Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Hardware implementatie in 3 building blocks" + }, "editable": true, "execution": { "iopub.execute_input": "2023-11-12T21:32:36.925080Z", @@ -8633,7 +8564,7 @@ } }, "slideshow": { - "slide_type": "" + "slide_type": "slide" }, "tags": [] }, @@ -8962,6 +8893,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -8971,21 +8908,6 @@ "### Vergelijking van de 3de en 5de orde Butterworth laagdoorlaatfilter" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Vergelijking derde en vijfde orde Butterworth laagdoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 17, @@ -8994,6 +8916,12 @@ "end_time": "2018-12-17T23:26:43.491799Z", "start_time": "2018-12-17T23:26:42.397932Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Vergelijking derde en vijfde orde Butterworth laagdoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2020-10-17T20:55:47.305463Z", "iopub.status.busy": "2020-10-17T20:55:47.305463Z", @@ -9011,6 +8939,9 @@ "name": "fig20" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -9034,6 +8965,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -9045,21 +8982,6 @@ "In het eerste voorbeeld van een banddoorlaatfilter bekijken we een redelijk breedbandfilter: De bandbreedte(40 MHz) is in dit geval veel groter dan de laagste doorlaatfrequentie." ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### 7de orde Butterworth banddoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 43, @@ -9068,6 +8990,12 @@ "end_time": "2018-11-12T14:37:50.815580Z", "start_time": "2018-11-12T14:37:50.346779Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "7de orde Butterworth banddoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:40:11.371401Z", "iopub.status.busy": "2022-10-15T21:40:11.370387Z", @@ -9084,6 +9012,9 @@ "name": "fig21" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -9124,21 +9055,6 @@ "freqs_resp([[bc,ac]],6,9,Printcoef=True,ShowGraf=False);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### 7de orde Butterworth banddoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 42, @@ -9147,6 +9063,12 @@ "end_time": "2018-11-12T14:37:50.815580Z", "start_time": "2018-11-12T14:37:50.346779Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "7de orde Butterworth banddoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:40:04.237116Z", "iopub.status.busy": "2022-10-15T21:40:04.237116Z", @@ -9157,6 +9079,9 @@ "jupyter": { "source_hidden": true }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -9181,6 +9106,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -9190,21 +9121,6 @@ "Wanneer we de transferfuntie in detail analyseren, vinden we 7 nullen op frequentie 0, en 14 polen, namelijk:" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### polen van een 7de orde Butterworth banddoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 41, @@ -9213,6 +9129,12 @@ "end_time": "2018-11-12T14:38:12.732946Z", "start_time": "2018-11-12T14:38:12.545731Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "polen van een 7de orde Butterworth banddoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:39:39.804618Z", "iopub.status.busy": "2022-10-15T21:39:39.803703Z", @@ -9224,6 +9146,9 @@ "jupyter": { "source_hidden": true }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -9262,21 +9187,6 @@ "polen_nullen(z7,p7,[[10e6,10e6,0],[50e6,50e6,0],[20e6,20e6,30e6],[20e6,20e6,-30e6]],Printcoef=True,ShowGraf=False);" ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### polen van een 7de orde Butterworth banddoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 40, @@ -9285,6 +9195,12 @@ "end_time": "2018-11-12T14:38:12.732946Z", "start_time": "2018-11-12T14:38:12.545731Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "polen van een 7de orde Butterworth banddoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2022-10-15T21:39:30.484034Z", "iopub.status.busy": "2022-10-15T21:39:30.484034Z", @@ -9302,6 +9218,9 @@ "name": "fig22" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ @@ -9326,6 +9245,12 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "skip" }, @@ -9337,21 +9262,6 @@ "Dit is wel een overdreven speciaal geval in de meeste gevallen is de bandbreedte B veel kleiner dan f, en dan lijkt het dat ze mooi op de kleine cirkel liggen. En dat is zeker goed als eerste benadering. Het is niet 100% exact. En dat is ook belangrijk als ingenieur om dat goed te weten." ] }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [ - "remove_cell", - "slide_title" - ] - }, - "source": [ - "###### Vergelijking banddoorlaatfilter en opeenvolging laagdoorlaat- en hoogdoorlaatfilter" - ] - }, { "cell_type": "code", "execution_count": 19, @@ -9360,6 +9270,12 @@ "end_time": "2018-11-12T14:39:18.493816Z", "start_time": "2018-11-12T14:39:17.962538Z" }, + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "Vergelijking banddoorlaatfilter en opeenvolging laagdoorlaat- en hoogdoorlaatfilter" + }, + "editable": true, "execution": { "iopub.execute_input": "2020-10-17T20:56:10.153396Z", "iopub.status.busy": "2020-10-17T20:56:10.153396Z", @@ -9377,6 +9293,9 @@ "name": "fig23" } }, + "slideshow": { + "slide_type": "slide" + }, "tags": [] }, "outputs": [ diff --git a/ToegepasteAnalogeElektronica/Klasse-C.ipynb b/ToegepasteAnalogeElektronica/Klasse-C.ipynb index e8e966b23..47d9e8a24 100644 --- a/ToegepasteAnalogeElektronica/Klasse-C.ipynb +++ b/ToegepasteAnalogeElektronica/Klasse-C.ipynb @@ -119,6 +119,11 @@ { "cell_type": "markdown", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, "editable": true, "slideshow": { "slide_type": "skip" @@ -14994,6 +14999,8 @@ "execution_count": 6, "metadata": { "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", "slide_title": "IC implementatie" }, "editable": true, diff --git a/ToegepasteAnalogeElektronica/Klasse-E.ipynb b/ToegepasteAnalogeElektronica/Klasse-E.ipynb index 04703a3d7..b0dffee5b 100644 --- a/ToegepasteAnalogeElektronica/Klasse-E.ipynb +++ b/ToegepasteAnalogeElektronica/Klasse-E.ipynb @@ -123,7 +123,7 @@ "source": [ "In de vorige hoofdstukken hebben we de C en F versterkers besproken. Dit zijn hoogfrequent versterkers met 1 vermogen transistor in de vermogentrap. \n", "\n", - "In dit hoofdstuk bestuderen we de klasse E versterker. Ook Klasse E versterkers zijn resonante versterkers die bestaan uit een LRC trilkring (of meerdere LC kringen) die aangestuurd wordt door een enkele transistor. Als een gevolg hiervan werkt deze versterker op een vaste frequentie of binnen een zeer beperkte bandbreedte rond deze centrale frequentie. Deze bandbreedte is typisch maximaal 1$\\%$ van de resonantie frequentie.\n", + "In dit hoofdstuk bestuderen we de klasse E versterker. Ook Klasse E versterkers zijn resonante versterkers die bestaan uit een LRC trilkring (of meerdere LC kringen) die aangestuurd wordt door een enkele transistor. Als een gevolg hiervan werkt deze versterker op een vaste frequentie of binnen een zeer beperkte bandbreedte rond deze centrale frequentie. Deze bandbreedte is typisch maximaal 1$ \\% $ van de resonantie frequentie.\n", "In {numref}`vermogenversterkersE` geven we een overzicht van deze verschillende versterkers.\n", "\n", ":::{list-table} Indeling van de vermogenversterkers\n", @@ -11441,7 +11441,9 @@ "slideshow": { "slide_type": "skip" }, - "tags": [] + "tags": [ + "remove-cell4PDF" + ] }, "source": [ "Het uiteindelijke schema zie je in {numref}`schema %s `" @@ -11473,7 +11475,9 @@ "slideshow": { "slide_type": "slide" }, - "tags": [] + "tags": [ + "remove-cell4PDF" + ] }, "outputs": [ { diff --git a/ToegepasteAnalogeElektronica/Klasse-F.ipynb b/ToegepasteAnalogeElektronica/Klasse-F.ipynb index 2a581a326..783b84a7c 100644 --- a/ToegepasteAnalogeElektronica/Klasse-F.ipynb +++ b/ToegepasteAnalogeElektronica/Klasse-F.ipynb @@ -1304,6 +1304,12 @@ "shell.execute_reply": "2022-10-01T20:32:52.396291Z", "shell.execute_reply.started": "2022-10-01T20:32:52.364277Z" }, + "mystnb": { + "figure": { + "caption": "", + "name": "" + } + }, "slideshow": { "slide_type": "slide" }, @@ -2984,6 +2990,12 @@ "shell.execute_reply": "2022-10-01T20:34:27.761919Z", "shell.execute_reply.started": "2022-10-01T20:34:27.741913Z" }, + "mystnb": { + "figure": { + "caption": "", + "name": "" + } + }, "slideshow": { "slide_type": "slide" }, diff --git a/ToegepasteAnalogeElektronica/SmithKaartOefening8.ipynb b/ToegepasteAnalogeElektronica/SmithKaartOefening8.ipynb index 556679d58..13b310c01 100644 --- a/ToegepasteAnalogeElektronica/SmithKaartOefening8.ipynb +++ b/ToegepasteAnalogeElektronica/SmithKaartOefening8.ipynb @@ -4,6 +4,12 @@ "cell_type": "markdown", "id": "f3cd07a6-3b50-4a6b-b871-abf08b437a01", "metadata": { + "KULeuvenSlides": { + "slide_code": "normal", + "slide_ref": "", + "slide_title": "" + }, + "editable": true, "slideshow": { "slide_type": "slide" }, diff --git a/ToegepasteAnalogeElektronica/_tocpdf.yml b/ToegepasteAnalogeElektronica/_tocpdf.yml index 4dd91fcf8..74b01358c 100644 --- a/ToegepasteAnalogeElektronica/_tocpdf.yml +++ b/ToegepasteAnalogeElektronica/_tocpdf.yml @@ -6,10 +6,10 @@ parts: - file: Spice-simulatie - caption: Versterkers chapters: - #- file: Klasse-C Er blijft een probleem met de cite in de caption op het einde + #- file: Klasse-C #Er blijft een probleem met de cite in de caption op het einde #- file: Klasse-F - file: Klasse-D - #- file: Klasse-E + - file: Klasse-E - caption: Filters chapters: - file: Filters