-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
113 lines (96 loc) · 5.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import argparse
from solver import Solver
from data_loader import get_loader, TestDataset
from torch.backends import cudnn
from datetime import datetime
from generic_utils import infolog
from os.path import join, basename
log = infolog.log
def str2bool(v):
return v.lower() in ('true')
def get_default_logdir(logdir_root='logs', msg=''):
started_datestring = datetime.now().strftime('%0m%0d-%0H%0M-%0S-%Y')
logdir = os.path.join(logdir_root, started_datestring + '-' + msg)
print('Using default logdir: {}'.format(logdir))
return logdir
def prepare_run(args, default=True):
if default:
log_dir = get_default_logdir(args.logdir_root, args.log_msg)
else:
log_dir = args.log_dir
os.makedirs(log_dir, exist_ok=True)
infolog.init(os.path.join(log_dir, 'terminal_train_log'), run_name=args.log_msg)
sample_dir = join(log_dir, 'samples')
model_save_dir = join(log_dir, 'models')
# Create directories if not exist.
os.makedirs(sample_dir, exist_ok=True)
os.makedirs(model_save_dir, exist_ok=True)
return log_dir, sample_dir, model_save_dir
def main(config):
# For fast training.
cudnn.benchmark = True
# Data loader.
train_loader_casia = get_loader(config.train_data_dir_casia,
config.target_speaker,
config.source_emotion,
config.target_emotion,
config.batch_size,
'train',
num_workers=config.num_workers)
test_loader = TestDataset(config.test_data_dir,
config.src_wav_dir,
config.target_speaker,
config.source_emotion,
config.target_emotion)
# Solver for training and testing StarGAN.
solver = Solver(train_loader_casia, test_loader, config, log)
if config.mode == 'train':
solver.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument('--target_speaker', type=str, default='liuchang')
parser.add_argument('--source_emotion', type=str, default='normal')
parser.add_argument('--target_emotion', type=str, default='angry')
parser.add_argument('--num_emotions', type=int, default=3, help='dimension of emotions labels')
parser.add_argument('--lambda_stl', type=float, default=1, help='weight for domain classification loss')
parser.add_argument('--lambda_rec', type=float, default=10, help='weight for reconstruction loss')
parser.add_argument('--lambda_gp', type=float, default=10, help='weight for gradient penalty')
parser.add_argument('--sampling_rate', type=int, default=16000, help='sampling rate')
# Training configuration.
parser.add_argument('--batch_size', type=int, default=32, help='mini-batch size')
parser.add_argument('--num_iters', type=int, default=50000, help='number of total iterations for training D')
parser.add_argument('--num_iters_decay', type=int, default=10000, help='number of iterations for decaying lr')
parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for D')
parser.add_argument('--c_lr', type=float, default=0.0001, help='learning rate for C')
parser.add_argument('--n_critic', type=int, default=5, help='number of D updates per each G update')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--resume_iters', type=int, default=None, help='resume training from this step, default: None')
parser.add_argument('--gan_curriculum', type=int, default=1000, help='Strong GAN loss for certain period at the beginning')
parser.add_argument('--starting_rate', type=float, default=0.01, help='Set the lambda weight between GAN loss and Recon loss during curriculum period at the beginning. We used the 0.01 weight.')
parser.add_argument('--default_rate', type=float, default=0.5, help='Set the lambda weight between GAN loss and Recon loss after curriculum period. We used the 0.5 weight.')
# Test configuration.
parser.add_argument('--test_iters', type=int, default=25001, help='test model from this step')
# Miscellaneous.
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--use_tensorboard', type=str2bool, default=True)
# Directories.
parser.add_argument('--train_data_dir_casia', type=str, default='datasets/CASIA_dataset/mc/train')
parser.add_argument('--test_data_dir', type=str, default='datasets/CASIA_dataset/mc/test')
parser.add_argument('--src_wav_dir', type=str, default='datasets/CASIA_dataset/CASIA')
parser.add_argument('--logdir_root', type=str, default='./logs')
parser.add_argument('--log_msg', type=str, default='mc_lf0cwt_lecwt-liuchang-normal-angry')
parser.add_argument('--log_dir', type=str, default=None)
# Step size.
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=1000)
parser.add_argument('--model_save_step', type=int, default=1000)
parser.add_argument('--lr_update_step', type=int, default=1000)
config = parser.parse_args()
config.log_dir, config.sample_dir, config.model_save_dir = prepare_run(config, default=(config.resume_iters is None))
log(config)
main(config)