-
Notifications
You must be signed in to change notification settings - Fork 7
/
opt08_fgh.m
100 lines (91 loc) · 2.59 KB
/
opt08_fgh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function [ f, g, H ] = opt08_fgh ( x, flag )
%% OPT08_FGH evaluates F, G and H for test case #8.
%
% Discussion:
%
% This example is known as the extended Powell singular function.
%
% The problem size N is arbitrary, except that it must be a multiple of 4.
%
% The optimizing value is
%
% X* = (0,0,0,0,...)
%
% Modified:
%
% 02 January 2008
%
% Author:
%
% Jeff Borggaard,
% Gene Cliff,
% Virginia Tech.
%
% Reference:
%
% John Dennis, Robert Schnabel,
% Numerical Methods for Unconstrained Optimization
% and Nonlinear Equations,
% SIAM, 1996,
% ISBN13: 978-0-898713-64-0,
% LC: QA402.5.D44.
%
% Parameters:
%
% Input, real X(N), the evaluation point.
%
% Input, string FLAG, indicates what must be computed.
% 'f' means only the value of F is needed,
% 'g' means only the value of G is needed,
% 'all' means F, G and H (if appropriate) are needed.
% It is acceptable to behave as though FLAG was 'all'
% on every call.
%
% Output, real F, the optimization function.
%
% Output, real G(N,1), the gradient column vector.
%
% Output, real H(N,N), the Hessian matrix.
%
n = length ( x );
if ( mod ( n, 4 ) ~= 0)
fprintf ( '\n' );
fprintf ( 'OPT08_FGH - Fatal error!\n' );
fprintf ( ' The input vector X should have length divisible by 4.\n'),
fprintf ( ' Instead, it has length = %d.\n', n );
keyboard
end
r = zeros(n,1);
for i=1:n/4
r(4*i-3) = x(4*i-3) + 10*x(4*i-2);
r(4*i-2) = sqrt(5)*( x(4*i-1)-x(4*i) );
r(4*i-1) = ( x(4*i-2)-2*x(4*i-1) )^2;
r(4*i ) = sqrt(10)*( x(4*i-3)-x(4*i) )^2;
end
f = r' * r;
g = zeros(n,1);
for i=1:n/4
g(4*i-3) = 2*(x(4*i-3)+10*x(4*i-2)) + 40*(x(4*i-3) -x(4*i ))^3;
g(4*i-2) = 20*(x(4*i-3)+10*x(4*i-2)) + 4*(x(4*i-2)-2*x(4*i-1))^3;
g(4*i-1) = 10*(x(4*i-1)- x(4*i )) - 8*(x(4*i-2)-2*x(4*i-1))^3;
g(4*i ) =-10*(x(4*i-1)- x(4*i )) - 40*(x(4*i-3) -x(4*i ))^3;
end
H = zeros(n,n);
for i=1:n/4
H(4*i-3,4*i-3) = 2 + 120*(x(4*i-3)-x(4*i))^2;
H(4*i-3,4*i-2) = 20;
H(4*i-3,4*i-1) = 0;
H(4*i-3,4*i ) =-120*(x(4*i-3)-x(4*i))^2;
H(4*i-2,4*i-3) = H(4*i-3,4*i-2);
H(4*i-2,4*i-2) = 200 + 12*(x(4*i-2)-2*x(4*i-1))^2;
H(4*i-2,4*i-1) =-24*(x(4*i-2)-2*x(4*i-1))^2;
H(4*i-2,4*i ) = 0;
H(4*i-1,4*i-3) = H(4*i-3,4*i-1);
H(4*i-1,4*i-2) = H(4*i-2,4*i-1);
H(4*i-1,4*i-1) = 10 + 48*(x(4*i-2)-2*x(4*i-1))^2;
H(4*i-1,4*i ) =-10;
H(4*i ,4*i-3) = H(4*i-3,4*i );
H(4*i ,4*i-2) = H(4*i-2,4*i );
H(4*i ,4*i-1) = H(4*i-1,4*i );
H(4*i ,4*i ) = 10 + 120*(x(4*i-3)-x(4*i))^2;
end