forked from mutecomm/go-sqlcipher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha1.c
276 lines (233 loc) · 6.44 KB
/
sha1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file sha1.c
LTC_SHA1 code by Tom St Denis
*/
#ifdef LTC_SHA1
const struct ltc_hash_descriptor sha1_desc =
{
"sha1",
2,
20,
64,
/* OID */
{ 1, 3, 14, 3, 2, 26, },
6,
&sha1_init,
&sha1_process,
&sha1_done,
&sha1_test,
NULL
};
#define F0(x,y,z) (z ^ (x & (y ^ z)))
#define F1(x,y,z) (x ^ y ^ z)
#define F2(x,y,z) ((x & y) | (z & (x | y)))
#define F3(x,y,z) (x ^ y ^ z)
#ifdef LTC_CLEAN_STACK
static int ss_sha1_compress(hash_state *md, const unsigned char *buf)
#else
static int s_sha1_compress(hash_state *md, const unsigned char *buf)
#endif
{
ulong32 a,b,c,d,e,W[80],i;
#ifdef LTC_SMALL_CODE
ulong32 t;
#endif
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32H(W[i], buf + (4*i));
}
/* copy state */
a = md->sha1.state[0];
b = md->sha1.state[1];
c = md->sha1.state[2];
d = md->sha1.state[3];
e = md->sha1.state[4];
/* expand it */
for (i = 16; i < 80; i++) {
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
}
/* compress */
/* round one */
#define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30);
#define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30);
#define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30);
#define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30);
#ifdef LTC_SMALL_CODE
for (i = 0; i < 20; ) {
FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 40; ) {
FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 60; ) {
FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 80; ) {
FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
#else
for (i = 0; i < 20; ) {
FF0(a,b,c,d,e,i++);
FF0(e,a,b,c,d,i++);
FF0(d,e,a,b,c,i++);
FF0(c,d,e,a,b,i++);
FF0(b,c,d,e,a,i++);
}
/* round two */
for (; i < 40; ) {
FF1(a,b,c,d,e,i++);
FF1(e,a,b,c,d,i++);
FF1(d,e,a,b,c,i++);
FF1(c,d,e,a,b,i++);
FF1(b,c,d,e,a,i++);
}
/* round three */
for (; i < 60; ) {
FF2(a,b,c,d,e,i++);
FF2(e,a,b,c,d,i++);
FF2(d,e,a,b,c,i++);
FF2(c,d,e,a,b,i++);
FF2(b,c,d,e,a,i++);
}
/* round four */
for (; i < 80; ) {
FF3(a,b,c,d,e,i++);
FF3(e,a,b,c,d,i++);
FF3(d,e,a,b,c,i++);
FF3(c,d,e,a,b,i++);
FF3(b,c,d,e,a,i++);
}
#endif
#undef FF0
#undef FF1
#undef FF2
#undef FF3
/* store */
md->sha1.state[0] = md->sha1.state[0] + a;
md->sha1.state[1] = md->sha1.state[1] + b;
md->sha1.state[2] = md->sha1.state[2] + c;
md->sha1.state[3] = md->sha1.state[3] + d;
md->sha1.state[4] = md->sha1.state[4] + e;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int s_sha1_compress(hash_state *md, const unsigned char *buf)
{
int err;
err = ss_sha1_compress(md, buf);
burn_stack(sizeof(ulong32) * 87);
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int sha1_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->sha1.state[0] = 0x67452301UL;
md->sha1.state[1] = 0xefcdab89UL;
md->sha1.state[2] = 0x98badcfeUL;
md->sha1.state[3] = 0x10325476UL;
md->sha1.state[4] = 0xc3d2e1f0UL;
md->sha1.curlen = 0;
md->sha1.length = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(sha1_process, s_sha1_compress, sha1, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (20 bytes)
@return CRYPT_OK if successful
*/
int sha1_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->sha1.length += md->sha1.curlen * 8;
/* append the '1' bit */
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha1.curlen > 56) {
while (md->sha1.curlen < 64) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
s_sha1_compress(md, md->sha1.buf);
md->sha1.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->sha1.curlen < 56) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha1.length, md->sha1.buf+56);
s_sha1_compress(md, md->sha1.buf);
/* copy output */
for (i = 0; i < 5; i++) {
STORE32H(md->sha1.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int sha1_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[20];
} tests[] = {
{ "abc",
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
0x9c, 0xd0, 0xd8, 0x9d }
},
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
0xE5, 0x46, 0x70, 0xF1 }
}
};
int i;
unsigned char tmp[20];
hash_state md;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
sha1_init(&md);
sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
sha1_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA1", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif