-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathti_inference.py
155 lines (115 loc) · 5.62 KB
/
ti_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import torch
import PIL
from PIL import Image
from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
import argparse
from pathlib import Path
def save_grid(imgs, rows, cols, path):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
grid.save(path)
def setup_pipe(embed_step, sample_step, guidance, pretrain_path, learned_embeds_path):
tokenizer = CLIPTokenizer.from_pretrained(
pretrain_path,
subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(
pretrain_path, subfolder="text_encoder", torch_dtype=torch.float16)
# load newly trained to CLIP
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
num_placeholder_tokens = len(loaded_learned_embeds)
for i in range(num_placeholder_tokens):
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[i]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
embeds.to(dtype)
# add the token in tokenizer
num_added_tokens = tokenizer.add_tokens(trained_token)
# if num_added_tokens == 0:
# raise ValueError(f"The tokenizer already contains the token {token}. Please pass a different `token` that is not already in the tokenizer.")
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(trained_token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer)
pipe = StableDiffusionPipeline.from_pretrained(
pretrain_path,
torch_dtype=torch.float16,
text_encoder=text_encoder,
tokenizer=tokenizer).to("cuda")
return pipe
def check_folder_exist(path):
if not os.path.exists(path):
os.makedirs(path)
def save_images_independent(all_images, path):
check_folder_exist(path)
output_folder = Path(path)
output_folder.mkdir(exist_ok=True)
for idx, img in enumerate(all_images):
img_path = output_folder / f"image_{idx + 200}.jpeg"
img.save(img_path, format='JPEG')
if __name__ == "__main__":
from ti_base import generate_placeholder_token_string
parser = argparse.ArgumentParser()
parser.add_argument('--target_image_name', type=str, required=True)
parser.add_argument('--initialization', type=str, required=True)
parser.add_argument('--init_type', type=str, required=True) # one of {null, class, caption}
# parser.add_argument('--eval_step', type=str, required=True)
parser.add_argument('--num_rows', type=int, required=True)
parser.add_argument('--num_cols', type=int, required=True)
parser.add_argument('--prompt', type=str, required=True)
args = parser.parse_args()
target_image_name = args.target_image_name
init_string = args.initialization
init_type = args.init_type
num_rows = args.num_rows
num_samples = args.num_cols
# prompt = "A photo of \u003C{}>".format(token_map[init_token])
pretrain_path = "sd-concept-output"
sample_steps = 30
guidance_scale = 7.5
# steps = [i * 20 for i in range(10)] + [i * 100 + 200 for i in range(8)] + [i * 250 + 1000 for i in range(5)]
steps = [20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240]
# steps = [i * 500 + 2000 for i in range(1, 7)]
# Get the num_placeholder_tokens
base_path = f"{target_image_name}/{init_type}_{init_string}_init"
loaded_learned_embeds = torch.load(
os.path.join(base_path, "learned_embeds-step-0.bin"),
map_location="cpu"
)
num_placeholder_tokens = len(loaded_learned_embeds)
place_holder_string = generate_placeholder_token_string(num_placeholder_tokens)
# breakpoint()
prompts = ["A photo of {}".format(place_holder_string),
"a good photo of a {}".format(place_holder_string),
"the photo of a {}".format(place_holder_string)
]
if args.prompt != '':
prompts = [args.prompt.format(place_holder_string)]
for step in steps:
print("Inferencing step {} ...".format(step))
embeds_path = base_path+'/learned_embeds-step-{}.bin'.format(step)
pipe = setup_pipe(step, sample_steps, guidance_scale, pretrain_path, embeds_path)
all_images = []
for prompt in prompts:
for _ in range(num_rows):
all_images.extend(pipe([prompt] * num_samples, num_inference_steps=sample_steps, guidance_scale=guidance_scale).images)
# save images
save_path = base_path + '_results'
check_folder_exist(save_path)
# label = save_path+"/{}_step_{}.jpg".format(prompt, step)
# save_grid(all_images, num_rows, num_samples, label)
# save all generated images into a foler as well
if args.prompt != '':
save_images_independent(all_images, save_path+f"/step_{step}"+f"/prompt_{args.prompt}")
else:
save_images_independent(all_images, save_path+f"/step_{step}")