From 5444ca8e51a04a1f87206951af1c91f190e0b6d7 Mon Sep 17 00:00:00 2001
From: jfalcou Extracts the pure part of a value. Defined in Header Parameters Return value Returns the pure part of its argument, ie the tuple of all its non-real components. For real inputs, the call returns 0. complex number from modulus and argument. Defined in Header Parameters Return value Returns elementwise true the polarument of the complex number i.e. \(\rho e^{i\theta}\).
Example
-
+
-
+
Example
-
+ Computes the conjugate value.
-constexpr tags::callable_convert kyosu::convert = {}
+ Select a value between two arguments based on a logical mask. convert to a target typek constexpr tags::callable_cos kyosu::cos = {}
@@ -417,9 +417,6 @@
Computes the cosine of the argument. constexpr tags::callable_oneminus kyosu::oneminus = {} Computes the value 1 minus the argument.
-
-constexpr tags::callable_polar kyosu::polar = {}
- complex number from modulus and argument. constexpr tags::callable_pow kyosu::pow = {} Computes the computing the pow operation \(x^y\).
@@ -435,9 +432,6 @@
constexpr tags::callable_proj kyosu::proj = {} Callable object computing proj(x), the projection of the cayley_dickson number z onto the (hyper) Riemann sphere.
-
-constexpr tags::callable_purepart kyosu::purepart = {}
- Extracts the pure part of a value. constexpr tags::callable_quaternion kyosu::quaternion = {} Constructs a kyosu::quaternion.
diff --git a/group__functions_ga047b3d79d00d4907df04ec98f2a0fada.html b/group__functions_ga047b3d79d00d4907df04ec98f2a0fada.html
index 61bf2889..25b0dbed 100644
--- a/group__functions_ga047b3d79d00d4907df04ec98f2a0fada.html
+++ b/group__functions_ga047b3d79d00d4907df04ec98f2a0fada.html
@@ -162,7 +162,60 @@ Example
-
+Example
-
+Example
-
+Example
-
+Example
-
+Example
-
+Example
-
+Example
-
+Example
-
+Example
-
+◆ purepart
-
-
-
-
-
-
-
-
-
-
-
- kyosu::purepart = {}
-
-inlineconstexpr
- Callable Signatures
-
-
-z
: Original value.Example
-
-◆ polar
-
-
-
-
-
-
-
-
-
-
-
- kyosu::polar = {}
-
-inlineconstexpr
- Callable Signatures
-
-
-rho
: modulus.theta
: argument.Example
-
-Example
-
+Example
-
+Example
-
+Example
-
+exp(i*z).
Select a value between two arguments based on a logical mask.
+convert to a target typek
Defined in Header
Parameters
z
: Value to process.x
: Value to process.U
`: target scalar type to convert to.Return value
constexpr tags::callable_from_multipolar kyosu::from_multipolar = {} | +kyosu::from_multipolar = {} |
Parameters
rho1
, rho2
: the moduli 'theta1', 'theta2': the angles in radian
Return value
the quaternion value
This function build quaternions in a way similar to the way polar builds complex numbers from a multipolar representation of an \(\mathbb{R}^4\) element.
-from_multipolar the two \(\mathbb{C}\) components of the quaternion are given in polar coordinates
-Defined in header
-Parameters
-rho1
, rho2
: the moduli 'theta1', 'theta2': the angles in radian
Return value
-the quaternion value
-kyosu::from_cylindrospherical = {} | +constexpr tags::callable_from_cylindrospherical kyosu::from_cylindrospherical = {} |
Parameters
t
, radius
: the modulicylindrospherical is specific to quaternions. It is often interesting to consider \(\mathbb{H}\) as the cartesian product of \(\mathbb{R}\) by \(\mathbb{R3}\) (the quaternionic multiplication has then a special form, as given here). This function therefore builds a quaternion from this representation, with the \(\mathbb{R3}\) component given in usual \(\mathbb{R3}\) spherical coordinates.
+Defined in header
+Parameters
+t
, radius
: the modulilongitude
, latitude
: angles in radianReturn value
+the quaternion value
+constexpr tags::callable_from_semipolar kyosu::from_semipolar = {} | +kyosu::from_semipolar = {} |
Parameters
This function build quaternions in a way similar to the way polar builds complex numbers from a semipolar representation of an \(\mathbb{R}^4\) element.
-from_semipolar takes as a first input the magnitude of the quaternion, as a second input an angle in the range 0 to \(\pi/2\) such that magnitudes of the first two \(\mathbb{C}\) components of the quaternion are the product of the first input and the sine and cosine of this angle, respectively, and finally as third and fourth inputs angles in the range \(-\pi/2\) to \(+\pi/2\) which represent the arguments of the first and second \(\mathbb{C}\) components of the quaternion, respectively.
-Defined in header
-Parameters
-rho
: the modulusalpha
, theta1
, theta2
: angles in radianReturn value
-the quaternion value representing the \(\R^4\) element.
-Parameters
Parameters
-q
: quaternion defining the rotation. x
: span of 3 elements to rotate
q
: quaternion value defining the rotation. x
: span of 3 elements to rotate
Return value
the span rotated by q
Parameters
m
the rotation matrix. The actual implementation assumes that m[i][j] will return the ith line and jth column element of the matrix (indices starting from 0).