-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrain.py
417 lines (390 loc) · 19.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import numpy as np
import time
import random
import argparse
import pickle
import os
import gc
import datetime
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from models import GKT, MultiHeadAttention, VAE, DKT
from metrics import KTLoss, VAELoss
from processing import load_dataset
# Graph-based Knowledge Tracing: Modeling Student Proficiency Using Graph Neural Network.
# For more information, please refer to https://dl.acm.org/doi/10.1145/3350546.3352513
# Author: jhljx
# Email: [email protected]
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_false', default=True, help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--data-dir', type=str, default='data', help='Data dir for loading input data.')
parser.add_argument('--data-file', type=str, default='assistment_test15.csv', help='Name of input data file.')
parser.add_argument('--save-dir', type=str, default='logs', help='Where to save the trained model, leave empty to not save anything.')
parser.add_argument('-graph-save-dir', type=str, default='graphs', help='Dir for saving concept graphs.')
parser.add_argument('--load-dir', type=str, default='', help='Where to load the trained model if finetunning. ' + 'Leave empty to train from scratch')
parser.add_argument('--dkt-graph-dir', type=str, default='dkt-graph', help='Where to load the pretrained dkt graph.')
parser.add_argument('--dkt-graph', type=str, default='dkt_graph.txt', help='DKT graph data file name.')
parser.add_argument('--model', type=str, default='GKT', help='Model type to use, support GKT and DKT.')
parser.add_argument('--hid-dim', type=int, default=32, help='Dimension of hidden knowledge states.')
parser.add_argument('--emb-dim', type=int, default=32, help='Dimension of concept embedding.')
parser.add_argument('--attn-dim', type=int, default=32, help='Dimension of multi-head attention layers.')
parser.add_argument('--vae-encoder-dim', type=int, default=32, help='Dimension of hidden layers in vae encoder.')
parser.add_argument('--vae-decoder-dim', type=int, default=32, help='Dimension of hidden layers in vae decoder.')
parser.add_argument('--edge-types', type=int, default=2, help='The number of edge types to infer.')
parser.add_argument('--graph-type', type=str, default='Dense', help='The type of latent concept graph.')
parser.add_argument('--dropout', type=float, default=0, help='Dropout rate (1 - keep probability).')
parser.add_argument('--bias', type=bool, default=True, help='Whether to add bias for neural network layers.')
parser.add_argument('--binary', type=bool, default=True, help='Whether only use 0/1 for results.')
parser.add_argument('--result-type', type=int, default=12, help='Number of results types when multiple results are used.')
parser.add_argument('--temp', type=float, default=0.5, help='Temperature for Gumbel softmax.')
parser.add_argument('--hard', action='store_true', default=False, help='Uses discrete samples in training forward pass.')
parser.add_argument('--no-factor', action='store_true', default=False, help='Disables factor graph model.')
parser.add_argument('--prior', action='store_true', default=False, help='Whether to use sparsity prior.')
parser.add_argument('--var', type=float, default=1, help='Output variance.')
parser.add_argument('--epochs', type=int, default=50, help='Number of epochs to train.')
parser.add_argument('--batch-size', type=int, default=128, help='Number of samples per batch.')
parser.add_argument('--train-ratio', type=float, default=0.6, help='The ratio of training samples in a dataset.')
parser.add_argument('--val-ratio', type=float, default=0.2, help='The ratio of validation samples in a dataset.')
parser.add_argument('--shuffle', type=bool, default=True, help='Whether to shuffle the dataset or not.')
parser.add_argument('--lr', type=float, default=0.001, help='Initial learning rate.')
parser.add_argument('--lr-decay', type=int, default=200, help='After how epochs to decay LR by a factor of gamma.')
parser.add_argument('--gamma', type=float, default=0.5, help='LR decay factor.')
parser.add_argument('--test', type=bool, default=False, help='Whether to test for existed model.')
parser.add_argument('--test-model-dir', type=str, default='logs/expDKT', help='Existed model file dir.')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.factor = not args.no_factor
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
res_len = 2 if args.binary else args.result_type
# Save model and meta-data. Always saves in a new sub-folder.
log = None
save_dir = args.save_dir
if args.save_dir:
exp_counter = 0
now = datetime.datetime.now()
# timestamp = now.isoformat()
timestamp = now.strftime('%Y-%m-%d %H-%M-%S')
if args.model == 'DKT':
model_file_name = 'DKT'
elif args.model == 'GKT':
model_file_name = 'GKT' + '-' + args.graph_type
else:
raise NotImplementedError(args.model + ' model is not implemented!')
save_dir = '{}/exp{}/'.format(args.save_dir, model_file_name + timestamp)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
meta_file = os.path.join(save_dir, 'metadata.pkl')
model_file = os.path.join(save_dir, model_file_name + '.pt')
optimizer_file = os.path.join(save_dir, model_file_name + '-Optimizer.pt')
scheduler_file = os.path.join(save_dir, model_file_name + '-Scheduler.pt')
log_file = os.path.join(save_dir, 'log.txt')
log = open(log_file, 'w')
pickle.dump({'args': args}, open(meta_file, "wb"))
else:
print("WARNING: No save_dir provided!" + "Testing (within this script) will throw an error.")
# load dataset
dataset_path = os.path.join(args.data_dir, args.data_file)
dkt_graph_path = os.path.join(args.dkt_graph_dir, args.dkt_graph)
if not os.path.exists(dkt_graph_path):
dkt_graph_path = None
concept_num, graph, train_loader, valid_loader, test_loader = load_dataset(dataset_path, args.batch_size, args.graph_type, dkt_graph_path=dkt_graph_path,
train_ratio=args.train_ratio, val_ratio=args.val_ratio, shuffle=args.shuffle,
model_type=args.model, use_cuda=args.cuda)
# build models
graph_model = None
if args.model == 'GKT':
if args.graph_type == 'MHA':
graph_model = MultiHeadAttention(args.edge_types, concept_num, args.emb_dim, args.attn_dim, dropout=args.dropout)
elif args.graph_type == 'VAE':
graph_model = VAE(args.emb_dim, args.vae_encoder_dim, args.edge_types, args.vae_decoder_dim, args.vae_decoder_dim, concept_num,
edge_type_num=args.edge_types, tau=args.temp, factor=args.factor, dropout=args.dropout, bias=args.bias)
vae_loss = VAELoss(concept_num, edge_type_num=args.edge_types, prior=args.prior, var=args.var)
if args.cuda:
vae_loss = vae_loss.cuda()
if args.cuda and args.graph_type in ['MHA', 'VAE']:
graph_model = graph_model.cuda()
model = GKT(concept_num, args.hid_dim, args.emb_dim, args.edge_types, args.graph_type, graph=graph, graph_model=graph_model,
dropout=args.dropout, bias=args.bias, has_cuda=args.cuda)
elif args.model == 'DKT':
model = DKT(res_len * concept_num, args.emb_dim, concept_num, dropout=args.dropout, bias=args.bias)
else:
raise NotImplementedError(args.model + ' model is not implemented!')
kt_loss = KTLoss()
# build optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay, gamma=args.gamma)
# load model/optimizer/scheduler params
if args.load_dir:
if args.model == 'DKT':
model_file_name = 'DKT'
elif args.model == 'GKT':
model_file_name = 'GKT' + '-' + args.graph_type
else:
raise NotImplementedError(args.model + ' model is not implemented!')
model_file = os.path.join(args.load_dir, model_file_name + '.pt')
optimizer_file = os.path.join(save_dir, model_file_name + '-Optimizer.pt')
scheduler_file = os.path.join(save_dir, model_file_name + '-Scheduler.pt')
model.load_state_dict(torch.load(model_file))
optimizer.load_state_dict(torch.load(optimizer_file))
scheduler.load_state_dict(torch.load(scheduler_file))
args.save_dir = False
# build optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay, gamma=args.gamma)
if args.model == 'GKT' and args.prior:
prior = np.array([0.91, 0.03, 0.03, 0.03]) # TODO: hard coded for now
print("Using prior")
print(prior)
log_prior = torch.FloatTensor(np.log(prior))
log_prior = torch.unsqueeze(log_prior, 0)
log_prior = torch.unsqueeze(log_prior, 0)
log_prior = Variable(log_prior)
if args.cuda:
log_prior = log_prior.cuda()
if args.cuda:
model = model.cuda()
kt_loss = KTLoss()
def train(epoch, best_val_loss):
t = time.time()
loss_train = []
kt_train = []
vae_train = []
auc_train = []
acc_train = []
if graph_model is not None:
graph_model.train()
model.train()
for batch_idx, (features, questions, answers) in enumerate(train_loader):
t1 = time.time()
if args.cuda:
features, questions, answers = features.cuda(), questions.cuda(), answers.cuda()
ec_list, rec_list, z_prob_list = None, None, None
if args.model == 'GKT':
pred_res, ec_list, rec_list, z_prob_list = model(features, questions)
elif args.model == 'DKT':
pred_res = model(features, questions)
else:
raise NotImplementedError(args.model + ' model is not implemented!')
loss_kt, auc, acc = kt_loss(pred_res, answers)
kt_train.append(float(loss_kt.cpu().detach().numpy()))
if auc != -1 and acc != -1:
auc_train.append(auc)
acc_train.append(acc)
if args.model == 'GKT' and args.graph_type == 'VAE':
if args.prior:
loss_vae = vae_loss(ec_list, rec_list, z_prob_list, log_prior=log_prior)
else:
loss_vae = vae_loss(ec_list, rec_list, z_prob_list)
vae_train.append(float(loss_vae.cpu().detach().numpy()))
print('batch idx: ', batch_idx, 'loss kt: ', loss_kt.item(), 'loss vae: ', loss_vae.item(), 'auc: ', auc, 'acc: ', acc, end=' ')
loss = loss_kt + loss_vae
else:
loss = loss_kt
print('batch idx: ', batch_idx, 'loss kt: ', loss_kt.item(), 'auc: ', auc, 'acc: ', acc, end=' ')
loss_train.append(float(loss.cpu().detach().numpy()))
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
del loss
print('cost time: ', str(time.time() - t1))
loss_val = []
kt_val = []
vae_val = []
auc_val = []
acc_val = []
if graph_model is not None:
graph_model.eval()
model.eval()
with torch.no_grad():
for batch_idx, (features, questions, answers) in enumerate(valid_loader):
if args.cuda:
features, questions, answers = features.cuda(), questions.cuda(), answers.cuda()
ec_list, rec_list, z_prob_list = None, None, None
if args.model == 'GKT':
pred_res, ec_list, rec_list, z_prob_list = model(features, questions)
elif args.model == 'DKT':
pred_res = model(features, questions)
else:
raise NotImplementedError(args.model + ' model is not implemented!')
loss_kt, auc, acc = kt_loss(pred_res, answers)
loss_kt = float(loss_kt.cpu().detach().numpy())
kt_val.append(loss_kt)
if auc != -1 and acc != -1:
auc_val.append(auc)
acc_val.append(acc)
loss = loss_kt
if args.model == 'GKT' and args.graph_type == 'VAE':
loss_vae = vae_loss(ec_list, rec_list, z_prob_list)
loss_vae = float(loss_vae.cpu().detach().numpy())
vae_val.append(loss_vae)
loss = loss_kt + loss_vae
loss_val.append(loss)
del loss
if args.model == 'GKT' and args.graph_type == 'VAE':
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.10f}'.format(np.mean(loss_train)),
'kt_train: {:.10f}'.format(np.mean(kt_train)),
'vae_train: {:.10f}'.format(np.mean(vae_train)),
'auc_train: {:.10f}'.format(np.mean(auc_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'loss_val: {:.10f}'.format(np.mean(loss_val)),
'kt_val: {:.10f}'.format(np.mean(kt_val)),
'vae_val: {:.10f}'.format(np.mean(vae_val)),
'auc_val: {:.10f}'.format(np.mean(auc_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t))
else:
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.10f}'.format(np.mean(loss_train)),
'auc_train: {:.10f}'.format(np.mean(auc_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'loss_val: {:.10f}'.format(np.mean(loss_val)),
'auc_val: {:.10f}'.format(np.mean(auc_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t))
if args.save_dir and np.mean(loss_val) < best_val_loss:
print('Best model so far, saving...')
torch.save(model.state_dict(), model_file)
torch.save(optimizer.state_dict(), optimizer_file)
torch.save(scheduler.state_dict(), scheduler_file)
if args.model == 'GKT' and args.graph_type == 'VAE':
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.10f}'.format(np.mean(loss_train)),
'kt_train: {:.10f}'.format(np.mean(kt_train)),
'vae_train: {:.10f}'.format(np.mean(vae_train)),
'auc_train: {:.10f}'.format(np.mean(auc_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'loss_val: {:.10f}'.format(np.mean(loss_val)),
'kt_val: {:.10f}'.format(np.mean(kt_val)),
'vae_val: {:.10f}'.format(np.mean(vae_val)),
'auc_val: {:.10f}'.format(np.mean(auc_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t), file=log)
del kt_train
del vae_train
del kt_val
del vae_val
else:
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.10f}'.format(np.mean(loss_train)),
'auc_train: {:.10f}'.format(np.mean(auc_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'loss_val: {:.10f}'.format(np.mean(loss_val)),
'auc_val: {:.10f}'.format(np.mean(auc_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t), file=log)
log.flush()
res = np.mean(loss_val)
del loss_train
del auc_train
del acc_train
del loss_val
del auc_val
del acc_val
gc.collect()
if args.cuda:
torch.cuda.empty_cache()
return res
def test():
loss_test = []
kt_test = []
vae_test = []
auc_test = []
acc_test = []
if graph_model is not None:
graph_model.eval()
model.eval()
model.load_state_dict(torch.load(model_file))
with torch.no_grad():
for batch_idx, (features, questions, answers) in enumerate(test_loader):
if args.cuda:
features, questions, answers = features.cuda(), questions.cuda(), answers.cuda()
ec_list, rec_list, z_prob_list = None, None, None
if args.model == 'GKT':
pred_res, ec_list, rec_list, z_prob_list = model(features, questions)
elif args.model == 'DKT':
pred_res = model(features, questions)
else:
raise NotImplementedError(args.model + ' model is not implemented!')
loss_kt, auc, acc = kt_loss(pred_res, answers)
loss_kt = float(loss_kt.cpu().detach().numpy())
if auc != -1 and acc != -1:
auc_test.append(auc)
acc_test.append(acc)
kt_test.append(loss_kt)
loss = loss_kt
if args.model == 'GKT' and args.graph_type == 'VAE':
loss_vae = vae_loss(ec_list, rec_list, z_prob_list)
loss_vae = float(loss_vae.cpu().detach().numpy())
vae_test.append(loss_vae)
loss = loss_kt + loss_vae
loss_test.append(loss)
del loss
print('--------------------------------')
print('--------Testing-----------------')
print('--------------------------------')
if args.model == 'GKT' and args.graph_type == 'VAE':
print('loss_test: {:.10f}'.format(np.mean(loss_test)),
'kt_test: {:.10f}'.format(np.mean(kt_test)),
'vae_test: {:.10f}'.format(np.mean(vae_test)),
'auc_test: {:.10f}'.format(np.mean(auc_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)))
else:
print('loss_test: {:.10f}'.format(np.mean(loss_test)),
'auc_test: {:.10f}'.format(np.mean(auc_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)))
if args.save_dir:
print('--------------------------------', file=log)
print('--------Testing-----------------', file=log)
print('--------------------------------', file=log)
if args.model == 'GKT' and args.graph_type == 'VAE':
print('loss_test: {:.10f}'.format(np.mean(loss_test)),
'kt_test: {:.10f}'.format(np.mean(kt_test)),
'vae_test: {:.10f}'.format(np.mean(vae_test)),
'auc_test: {:.10f}'.format(np.mean(auc_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)), file=log)
del kt_test
del vae_test
else:
print('loss_test: {:.10f}'.format(np.mean(loss_test)),
'auc_test: {:.10f}'.format(np.mean(auc_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)), file=log)
log.flush()
del loss_test
del auc_test
del acc_test
gc.collect()
if args.cuda:
torch.cuda.empty_cache()
if args.test is False:
# Train model
print('start training!')
t_total = time.time()
best_val_loss = np.inf
best_epoch = 0
for epoch in range(args.epochs):
val_loss = train(epoch, best_val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_epoch = epoch
print("Optimization Finished!")
print("Best Epoch: {:04d}".format(best_epoch))
if args.save_dir:
print("Best Epoch: {:04d}".format(best_epoch), file=log)
log.flush()
test()
if log is not None:
print(save_dir)
log.close()