-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcls.py
200 lines (153 loc) · 5.96 KB
/
cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def cls(NumObserved, ExpectedBG, BGError, SigHypothesis, NumToyExperiments):
import scipy.stats
# generate a set of expected-number-of-background-events, one for each toy
# experiment, distributed according to a Gaussian with the specified mean
# and uncertainty
ExpectedBGs = scipy.stats.norm.rvs(loc=ExpectedBG, scale=BGError, size=NumToyExperiments)
# Ignore values in the tail of the Gaussian extending to negative numbers
ExpectedBGs = [value for value in ExpectedBGs if value > 0]
# For each toy experiment, get the actual number of background events by
# taking one value from a Poisson distribution created using the expected
# number of events.
ToyBGs = scipy.stats.poisson.rvs(ExpectedBGs)
ToyBGs = map(float, ToyBGs)
# The probability for the background alone to fluctutate as LOW as
# observed = the fraction of the toy experiments with backgrounds as low as
# observed = p_b.
# NB (1 - this p_b) corresponds to what is usually called p_b for CLs.
p_b = scipy.stats.percentileofscore(ToyBGs, NumObserved, kind='weak')*.01
#print 1. - p_b
# Toy MC for background+signal
ExpectedBGandS = [expectedbg + SigHypothesis for expectedbg in ExpectedBGs]
ExpectedBGandS = [x for x in ExpectedBGandS if x > 0]
if len(ExpectedBGandS)==0:
return 0.
ToyBplusS = scipy.stats.poisson.rvs(ExpectedBGandS)
ToyBplusS = map(float, ToyBplusS)
# Calculate the fraction of these that are >= the number observed,
# giving p_(S+B). Divide by (1 - p_b) a la the CLs prescription.
p_SplusB = scipy.stats.percentileofscore(ToyBplusS, NumObserved, kind='weak')*.01
if p_SplusB>p_b:
print 0.
else:
print 1.-(p_SplusB / p_b) # 1 - CLs
import math
#rejected = rejected(low) and/or rejected(high)
#accepted = accepted(low) and accepted(high)
print '####',100,1
cll = cls(10, 6.0, 1.7, 7.32, 100000) #low
clh = cls(7, 10.2, 3.3, 4.44, 100000) #high
print '####',120,1
cll = cls(10, 6.0, 1.7, 14.65, 100000) #low
clh = cls(7, 10.2, 3.3, 8.24, 100000) #high
print '####',120,20
cll = cls(10, 6.0, 1.7, 9.82, 100000) #low
clh = cls(7, 10.2, 3.3, 5.24, 100000) #high
print '####',120,30
cll = cls(10, 6.0, 1.7, 7.55, 100000) #low
clh = cls(7, 10.2, 3.3, 4.98, 100000) #high
print '####',120,50
cll = cls(10, 6.0, 1.7, 2.98, 100000) #low
clh = cls(7, 10.2, 3.3, 1.66, 100000) #high
print '####',140,1
cll = cls(10, 6.0, 1.7, 16.82, 100000) #low
clh = cls(7, 10.2, 3.3, 11.54, 100000) #high
print '####',140,30
cll = cls(10, 6.0, 1.7, 11.95, 100000) #low
clh = cls(7, 10.2, 3.3, 7.81, 100000) #high
print '####',140,50
cll = cls(10, 6.0, 1.7, 7.23, 100000) #low
clh = cls(7, 10.2, 3.3, 4.32, 100000) #high
print '####',160,1
cll = cls(10, 6.0, 1.7, 17.67, 100000) #low
clh = cls(7, 10.2, 3.3, 12.87, 100000) #high
print '####',180,60
cll = cls(10, 6.0, 1.7, 10.88, 100000) #low
clh = cls(7, 10.2, 3.3, 8.87, 100000) #high
print '####',180,80
cll = cls(10, 6.0, 1.7, 7.41, 100000) #low
clh = cls(7, 10.2, 3.3, 5.45, 100000) #high
print '####',200,50
cll = cls(10, 6.0, 1.7, 12.58, 100000) #low
clh = cls(7, 10.2, 3.3, 13.16, 100000) #high
print '####',200,70
cll = cls(10, 6.0, 1.7, 10.54, 100000) #low
clh = cls(7, 10.2, 3.3, 10.96, 100000) #high
print '####',200,80
cll = cls(10, 6.0, 1.7, 8.95, 100000) #low
clh = cls(7, 10.2, 3.3, 8.1, 100000) #high
print '####',200,100
cll = cls(10, 6.0, 1.7, 6.06, 100000) #low
clh = cls(7, 10.2, 3.3, 4.94, 100000) #high
print '####',220,80
cll = cls(10, 6.0, 1.7, 8.64, 100000) #low
clh = cls(7, 10.2, 3.3, 9.56, 100000) #high
print '####',220,100
cll = cls(10, 6.0, 1.7, 7.4, 100000) #low
clh = cls(7, 10.2, 3.3, 6.92, 100000) #high
print '####',250,70
cll = cls(10, 6.0, 1.7, 7.39, 100000) #low
clh = cls(7, 10.2, 3.3, 12.86, 100000) #high
print '####',250,100
cll = cls(10, 6.0, 1.7, 6.59, 100000) #low
clh = cls(7, 10.2, 3.3, 9.77, 100000) #high
print '####',250,120
cll = cls(10, 6.0, 1.7, 5.32, 100000) #low
clh = cls(7, 10.2, 3.3, 6.75, 100000) #high
print '####',250,150
cll = cls(10, 6.0, 1.7, 2.96, 100000) #low
clh = cls(7, 10.2, 3.3, 3.15, 100000) #high
print '####',280,1
cll = cls(10, 6.0, 1.7, 5.64, 100000) #low
clh = cls(7, 10.2, 3.3, 13.37, 100000) #high
print '####',300,70
cll = cls(10, 6.0, 1.7, 4.47, 100000) #low
clh = cls(7, 10.2, 3.3, 11.51, 100000) #high
print '####',300,100
cll = cls(10, 6.0, 1.7, 4.35, 100000) #low
clh = cls(7, 10.2, 3.3, 10.01, 100000) #high
print '####',300,120
cll = cls(10, 6.0, 1.7, 4.1, 100000) #low
clh = cls(7, 10.2, 3.3, 8.27, 100000) #high
print '####',300,140
cll = cls(10, 6.0, 1.7, 3.83, 100000) #low
clh = cls(7, 10.2, 3.3, 6.95, 100000) #high
print '####',320,1
cll = cls(10, 6.0, 1.7, 3.48, 100000) #low
clh = cls(7, 10.2, 3.3, 11.85, 100000) #high
print '####',320,50
cll = cls(10, 6.0, 1.7, 3.59, 100000) #low
clh = cls(7, 10.2, 3.3, 10.99, 100000) #high
print '####',340,100
cll = cls(10, 6.0, 1.7, 2.64, 100000) #low
clh = cls(7, 10.2, 3.3, 8.51, 100000) #high
print '####',340,120
cll = cls(10, 6.0, 1.7, 2.83, 100000) #low
clh = cls(7, 10.2, 3.3, 7.63, 100000) #high
print '####',360,30
cll = cls(10, 6.0, 1.7, 2.23, 100000) #low
clh = cls(7, 10.2, 3.3, 8.84, 100000) #high
print '####',360,50
cll = cls(10, 6.0, 1.7, 2.16, 100000) #low
clh = cls(7, 10.2, 3.3, 8.54, 100000) #high
print '####',360,60
cll = cls(10, 6.0, 1.7, 2.18, 100000) #low
clh = cls(7, 10.2, 3.3, 8.62, 100000) #high
print '####',360,80
cll = cls(10, 6.0, 1.7, 2.20, 100000) #low
clh = cls(7, 10.2, 3.3, 8.20, 100000) #high
print '####',360,100
cll = cls(10, 6.0, 1.7, 2.13, 100000) #low
clh = cls(7, 10.2, 3.3, 7.92, 100000) #high
print '####',360,110
cll = cls(10, 6.0, 1.7, 2.15, 100000) #low
clh = cls(7, 10.2, 3.3, 7.36, 100000) #high
print '####',380,30
cll = cls(10, 6.0, 1.7, 1.71, 100000) #low
clh = cls(7, 10.2, 3.3, 7.62, 100000) #high
print '####',380,50
cll = cls(10, 6.0, 1.7, 1.75, 100000) #low
clh = cls(7, 10.2, 3.3, 7.5, 100000) #high
print '####',380,80
cll = cls(10, 6.0, 1.7, 1.72, 100000) #low
clh = cls(7, 10.2, 3.3, 7.08, 100000) #high