forked from stephanecharette/DarkHelp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.cpp
50 lines (39 loc) · 1.56 KB
/
example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <DarkHelp.hpp>
// -----------------------------------------------------------------------------
// Please also see the other source code examples in the ../src-apps/ directory.
// -----------------------------------------------------------------------------
int main()
{
int rc = 0;
try
{
DarkHelp::Config cfg("example.cfg", "example_best.weights", "example.names");
cfg.enable_tiles = false;
cfg.annotation_auto_hide_labels = false;
cfg.annotation_include_duration = true;
cfg.annotation_include_timestamp = false;
cfg.threshold = 0.2f;
// lots of other options, scroll down this page to see what can be done: https://www.ccoderun.ca/darkhelp/api/classDarkHelp_1_1Config.html#details
DarkHelp::NN nn(cfg);
// you can further modify the configuration even after the neural network has been created
nn.config.annotation_line_thickness = 1;
nn.config.annotation_shade_predictions = 0.36f;
// apply the neural network to an image on disk
const auto results = nn.predict("example.jpg");
// print the neural network results on the console
std::cout << results << std::endl;
// display both the original image and the annotated image using OpenCV HighGUI
cv::Mat img1 = nn.original_image;
cv::Mat img2 = nn.annotate();
const cv::Size size(1024, 768);
cv::imshow("original", DarkHelp::resize_keeping_aspect_ratio(img1, size));
cv::imshow("detected", DarkHelp::resize_keeping_aspect_ratio(img2, size));
cv::waitKey();
}
catch (const std::exception & e)
{
std::cout << e.what() << std::endl;
rc = 1;
}
return rc;
}