-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
140 lines (113 loc) · 5.14 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import random
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from model import QNetwork
from memory import ReplayBuffer
class DQNAgent:
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, seed, buffer_size=int(1e5), batch_size=64, gamma=0.99, tau=1e-3, lr=5e-4, update_every=4, prioritized=False, cpu=False):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
"""
if cpu:
self.device = torch.device("cpu")
else:
self.device = torch.device("cuda:0")
self.state_size = state_size
self.action_size = action_size
self.seedval = seed
self.seed = random.seed(seed)
self.buffer_size = buffer_size
self.batch_size = batch_size
self.gamma = gamma
self.tau = tau
self.lr = lr
self.update_every = update_every
self.qnetwork_local = QNetwork(state_size, action_size, seed).to(self.device)
self.qnetwork_local.apply(self.weights_init)
self.qnetwork_target = QNetwork(state_size, action_size, seed).to(self.device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.lr)
self.prioritized = prioritized
self.memory = ReplayBuffer(action_size, self.buffer_size, self.batch_size, seed, self.device)
self.t_step = 0
# weight xavier initialize
def weights_init(self, m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
torch.nn.init.xavier_uniform_(m.weight)
def __repr__(self):
import pandas as pd
from tabulate import tabulate
agent_table = []
for key, val in self.__dict__.items():
if key == 'seed':
agent_table.append((key, str(self.seedval)))
elif key != 'seedval':
agent_table.append((key, str(val)))
return tabulate(pd.DataFrame.from_records(agent_table), tablefmt='fancy_grid', showindex='never')
def step(self, state, action, reward, next_state, done):
# Learn every self.update_every time steps.
self.t_step = (self.t_step + 1) % self.update_every
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > self.batch_size:
experiences = self.memory.sample()
self.learn(experiences)
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection
if np.random.uniform() > eps:
# return torch.argmax(action_values[0]).item()
return np.argmax(action_values.cpu().data.numpy())
else:
return np.random.randint(0, self.action_size)
def learn(self, experiences):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
## TODO: compute and minimize the loss
"*** YOUR CODE HERE ***"
Q_target_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
Q_target = rewards + (self.gamma * Q_target_next * (1 - dones))
Q_E = self.qnetwork_local(states).gather(1, actions)
loss = F.mse_loss(Q_E, Q_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)
return abs(Q_E - Q_target)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)