-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
36 lines (32 loc) · 1.06 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn as nn
import torch.nn.functional as F
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, nodes=None):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
nodes (dict): keys = layer, val = number of nodes
"""
if nodes is None:
nodes = {
'fc1' : 64,
'fc2' : 64
}
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, nodes["fc1"])
self.fc2 = nn.Linear(nodes["fc1"] , nodes["fc2"])
self.fc3 = nn.Linear(nodes["fc2"], action_size)
def forward(self, state):
"""
Build a network that maps state -> action values.
"""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return self.fc3(x)
pass