-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAWF_PyTorch.py
178 lines (144 loc) · 5.66 KB
/
AWF_PyTorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data.dataset import Dataset
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
from torch.utils.tensorboard import SummaryWriter
import gc
class AWF_Data(Dataset):
def __init__(self, path_data, path_labels):
with open(path_data, 'rb') as f:
self.data_npy = np.load(f, allow_pickle=True)
self.raw_data = self.data_npy.astype(dtype='float_')
self.data = np.transpose(self.raw_data.reshape(self.raw_data.shape[0], self.raw_data.shape[1], 1), (0, 2, 1))
with open(path_labels, 'rb') as f:
self.labels_npy = np.load(path_labels, allow_pickle=True)
dict_labels = None
possible_labels = list(set(self.labels_npy))
if not dict_labels:
dict_labels = {}
n = 0
for label in possible_labels:
dict_labels[label] = n
n = n + 1
new_labels = []
for label in self.labels_npy:
new_labels.append(dict_labels[label])
self.label = new_labels
self.data_len = len(self.data)
def __getitem__(self, index):
single_label = self.label[index]
return (self.data[index], single_label)
def __len__(self):
return self.data_len
class AWF_Network(nn.Module):
def __init__(self, nb_classes):
super(AWF_Network, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(1, 32, 8, 1, 0),
nn.BatchNorm1d(32),
nn.ELU(),
nn.MaxPool1d(8, 4, 0),
nn.Dropout(0.2),
)
self.out = nn.Sequential(
nn.Flatten(),
nn.Linear(39904, 2048),
nn.ReLU(),
nn.Linear(2048, 512),
nn.ReLU(),
nn.Linear(512, nb_classes)
)
def forward(self, x):
x = self.conv1(x)
output = self.out(x)
return output, x
NB_CLASSES = 101
BATCH_SIZE = 128
LR = 0.001
print("loading dataset")
print(gc.collect())
full_data = AWF_Data("./data/data.npy", "./data/labels.npy")
print(gc.collect())
print("loading complete")
train_split= 0.9
validate_split = 0.05
test_split = 0.05
shuffle_dataset = True
random_seed = 16
dataset_size = len(full_data)
indices = list(range(dataset_size))
train_size = int(train_split * dataset_size)
validation_size = int(validate_split * dataset_size)
test_size = int(dataset_size - train_size - validation_size)
if shuffle_dataset :
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices, test_indices= indices[:train_size], indices[train_size:train_size+validation_size], indices[train_size+validation_size:]
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
test_sampler = SubsetRandomSampler(test_indices)
train_loader = DataLoader(full_data, batch_size=BATCH_SIZE,sampler=train_sampler)
validation_loader = DataLoader(full_data, batch_size=BATCH_SIZE,sampler=valid_sampler)
test_loader = DataLoader(full_data, batch_size=BATCH_SIZE,sampler=test_sampler)
cuda_gpu = torch.cuda.is_available()
cnn = AWF_Network(NB_CLASSES).float()
if(cuda_gpu):
cnn = torch.nn.DataParallel(cnn, device_ids=[0]).cuda()
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
loss_func = nn.CrossEntropyLoss()
print("starting training")
writer = SummaryWriter()
temp_counter = 0
for epoch in range(1):
for step, (b_x, b_y) in enumerate(train_loader):
b_x = b_x.cuda()
b_y = b_y.cuda()
output = cnn(b_x.float())[0]
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 50 == 0:
corrects = 0
avg_loss = 0
for (b_x, b_y) in validation_loader:
b_x = b_x.cuda()
b_y = b_y.cuda()
logit = cnn(b_x.float())[0]
loss = loss_func(logit, b_y)
avg_loss += loss.item()
corrects += (torch.max(logit, 1)
[1].view(b_y.size()).data == b_y.data).sum()
size = validation_size
avg_loss /= size
accuracy = 100.0 * corrects / size
print('Epoch: {:2d}({:6d}/{}) Evaluation - loss: {:.6f} acc: {:3.4f}%({}/{})'.format(
epoch,
step * 128,
train_size,
avg_loss,
accuracy,
corrects,
size))
writer.add_scalar("loss/training", avg_loss, temp_counter)
writer.add_scalar("accuracy/training", accuracy, temp_counter)
temp_counter+=1
writer.flush()
writer.close()
print("Saving Model")
torch.save(cnn, './model/awf.pkl')
print("Model Saved")
corrects = 0
avg_loss = 0
for (b_x, b_y) in test_loader:
b_x = b_x.cuda()
b_y = b_y.cuda()
logit = cnn(b_x.float())[0]
loss = loss_func(logit, b_y)
avg_loss += loss.item()
corrects += (torch.max(logit, 1)
[1].view(b_y.size()).data == b_y.data).sum()
size = test_size
accuracy = 100.0 * corrects / size
print("accuracy: {:3.4f}%".format(accuracy))