-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_plot.py
34 lines (30 loc) · 1.22 KB
/
run_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import matplotlib.pyplot as plt
import pickle
import os
outdir='output'
if not os.path.exists(outdir):
os.makedirs(outdir)
os.system('python main.py --optimizer sgd --learning_rate 1e-2 --output='+outdir+'/sgd.pkl')
os.system('python main.py --optimizer momentumsgd --learning_rate 1e-2 --output='+outdir+'/momentumsgd.pkl')
os.system('python main.py --optimizer rmsprop --learning_rate 1e-2 --output='+outdir+'/rmsprop.pkl')
os.system('python main.py --optimizer adam --learning_rate 1e-2 --output='+outdir+'/adam.pkl')
os.system('python main.py --optimizer adagrad --learning_rate 1e-2 --output='+outdir+'/adagrad.pkl')
optimizers = ['sgd', 'momentumsgd', 'rmsprop', 'adam', 'adagrad']
# Plots the training losses.
for optimizer in optimizers:
data = pickle.load(open(outdir+'/'+optimizer+".pkl", "rb"))
plt.plot(data['train_loss'], label=optimizer)
plt.ylabel('Trainig loss')
plt.xlabel('Epochs')
plt.legend()
plt.savefig('loss.pdf')
plt.show()
# Plots the training accuracies.
for optimizer in optimizers:
data = pickle.load(open(outdir+'/'+optimizer+".pkl", "rb"))
plt.plot(data['train_accuracy'], label=optimizer)
plt.ylabel('Trainig accuracy')
plt.xlabel('Epochs')
plt.legend()
plt.savefig('accuracy.pdf')
plt.show()