-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathvideo_test.py
executable file
·111 lines (98 loc) · 4.47 KB
/
video_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import utils.gpu as gpu
from model.build_model import Build_Model
from utils.tools import *
from eval.evaluator import Evaluator
import argparse
from timeit import default_timer as timer
import logging
from config import cfg
from utils.visualize import *
from utils.torch_utils import *
from utils.log import Logger
from tensorboardX import SummaryWriter
class Detection(object):
def __init__(self,
gpu_id=0,
weight_path=None,
video_path=None,
output_dir=None,
):
self.__num_class = cfg.VOC_DATA.NUM
self.__conf_threshold = cfg.VAL.CONF_THRESH
self.__nms_threshold = cfg.VAL.NMS_THRESH
self.__device = gpu.select_device(gpu_id)
self.__multi_scale_val = cfg.VAL.MULTI_SCALE_VAL
self.__flip_val = cfg.VAL.FLIP_VAL
self.__classes = cfg.VOC_DATA.CLASSES
self.__video_path = video_path
self.__output_dir = output_dir
self.__model = Build_Model().to(self.__device)
self.__load_model_weights(weight_path)
self.__evalter = Evaluator(self.__model, showatt=False)
def __load_model_weights(self, weight_path):
print("loading weight file from : {}".format(weight_path))
weight = os.path.join(weight_path)
chkpt = torch.load(weight, map_location=self.__device)
self.__model.load_state_dict(chkpt)
print("loading weight file is done")
del chkpt
def Video_detection(self):
import cv2
vid = cv2.VideoCapture(self.__video_path)
if not vid.isOpened():
raise IOError("Couldn't open webcam or video")
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
video_fps = vid.get(cv2.CAP_PROP_FPS)
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
isOutput = True if self.__output_dir != "" else False
if isOutput:
print("!!! TYPE:", type(self.__output_dir), type(video_FourCC), type(video_fps), type(video_size))
out = cv2.VideoWriter(self.__output_dir, video_FourCC, video_fps, video_size)
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
while True:
return_value, frame = vid.read()
bboxes_prd = self.__evalter.get_bbox(frame)
if bboxes_prd.shape[0] != 0:
boxes = bboxes_prd[..., :4]
class_inds = bboxes_prd[..., 5].astype(np.int32)
scores = bboxes_prd[..., 4]
visualize_boxes(image=frame, boxes=boxes, labels=class_inds, probs=scores, class_labels=self.__classes)
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
if accum_time > 1:
accum_time = accum_time - 1
fps = "FPS: " + str(curr_fps)
curr_fps = 0
cv2.putText(frame, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.50, color=(255, 0, 0), thickness=2)
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.imshow("result", frame)
if isOutput:
out.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if __name__ == "__main__":
global logger, writer
parser = argparse.ArgumentParser()
parser.add_argument('--weight_path', type=str, default='E:\YOLOV4\weight/best.pt', help='weight file path')
parser.add_argument('--video_path', type=str, default='bag.avi', help='video file path')
parser.add_argument('--output_dir', type=str, default='output', help='output file path')
parser.add_argument('--log_val_path', type=str, default='log_val',
help='weight file path')
parser.add_argument('--gpu_id', type=int, default=-1, help='whither use GPU(eg:0,1,2,3,4,5,6,7,8) or CPU(-1)')
parser.add_argument('--mode', type=str, default='det',
help='val or det')
opt = parser.parse_args()
writer = SummaryWriter(logdir=opt.log_val_path + '/event')
logger = Logger(log_file_name=opt.log_val_path + '/log_video_detection.txt', log_level=logging.DEBUG, logger_name='CIFAR').get_log()
Detection(gpu_id=opt.gpu_id,
weight_path=opt.weight_path,
video_path=opt.video_path,
output_dir=opt.output_dir).Video_detection()