-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhalting_mpi.py
205 lines (187 loc) · 11.9 KB
/
halting_mpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import gc
import time
import uuid
import torch
import numpy as np
import mpi4py
import pandas as pd
mpi4py.rc.recv_mprobe = False
import argparse
import subprocess
from mpi4py import MPI
from torch.utils.tensorboard import SummaryWriter
def convert_sec(sec):
mm, ss = divmod(sec, 60)
return f'{mm:02.0f}m {ss:02.0f}s'
def launch_simulation(ID, args):
# Initiate ROS-Gazebo simulation
for n_restart in range(10): # Max restart 10 times
os.system(f"singularity instance start --net --network=none {os.getenv('CONTAINER')} {ID} {args} > /dev/null 2>&1")
time.sleep(5.0)
test_proc = subprocess.Popen(["singularity", "run", f"instance://{ID}", "/wait_until_stable"])
try:
test_proc.wait( timeout=60.0 )
except subprocess.TimeoutExpired as e:
print(f"Restarting {ID}...", flush=True)
os.system(f"singularity instance stop {ID} > /dev/null 2>&1")
else:
break
assert n_restart < 10, f"Some simulation failed to launched after 10 trials. Stop training process."
if __name__ == "__main__":
# Define argument parser
parser = argparse.ArgumentParser()
parser.add_argument("--base_system", type=str, nargs='+', choices=["eband", "dwa", "teb"], required=True)
parser.add_argument("--total_sample", type=int, required=True)
parser.add_argument("--train_iter", type=int, default=50)
parser.add_argument("--epsilon", type=float, default=0.05)
parser.add_argument("--detection_range", type=float, default=8.0)
parser.add_argument("--n_sample", type=int, default=800)
parser.add_argument("--timeout", type=float, default=200.0)
parser.add_argument("--reward_constant", type=float, default=60.0, help="Constant to make successful episode reward positive.")
args = parser.parse_args()
# Initialize MPI
ROOT = 0
ID = uuid.uuid4()
jobID = os.getenv("SLURM_JOBID")
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
tasks_per_node = float(os.getenv('IBRUN_TASKS_PER_NODE')) # MUST BE 19 simulators per node
num_node = int(size / tasks_per_node)
local_rank = int(os.getenv('MPI_LOCALRANKID') or os.getenv('MV2_COMM_WORLD_LOCAL_RANK'))
# Define directories
WORK_DIRECTORY = f"{os.getenv('WORK')}/results"
LOG_DIRECTORY = f"{WORK_DIRECTORY}/runs/halting/{jobID}"
MODEL_DIRECTORY = f"{WORK_DIRECTORY}/checkpoints/halting/{jobID}"
DATA_DIRECTORY = f"{WORK_DIRECTORY}/data/halting/{jobID}"
TRAIN_STORAGE = f"{DATA_DIRECTORY}/train.pt"
CSV_STORAGE = f"{DATA_DIRECTORY}/result.csv"
# Create directory if not exists
if rank==ROOT:
if not os.path.exists(LOG_DIRECTORY):
os.makedirs(LOG_DIRECTORY)
if not os.path.exists(MODEL_DIRECTORY):
os.makedirs(MODEL_DIRECTORY)
if not os.path.exists(DATA_DIRECTORY):
os.makedirs(DATA_DIRECTORY)
comm.Barrier()
# Log hyper-parameters to tensorboard
logger = (SummaryWriter(log_dir=LOG_DIRECTORY) if rank==ROOT else None)
if rank == ROOT:
param = f"Total samples: {args.total_sample}\nGPR train iteration: {args.train_iter}\n" \
f"epsilon: {args.epsilon}\nnumber of waypoint sampling: {args.n_sample}" \
f"Base navigation system: {', '.join(args.base_system)}"\
f"reward: -SUM(TTD) - 60*I_collision + {args.reward_constant:.1f}"
logger.add_text('hyper-parameters', param)
# Launch simulation with base navigation system
system_setup = (
('eband', 'eband'), ('dwa', 'dwa'), ('teb', 'teb'),
('eband', 'dwa' ), ('eband', 'teb'), ('dwa', 'teb')
)
time.sleep(local_rank/tasks_per_node)
if local_rank == ROOT:
roslaunch_argument = f"local_planner1:={args.base_system[0]} local_planner2:={args.base_system[1]}"
else:
nav_system1, nav_system2 = system_setup[local_rank % 6]
roslaunch_argument = f"local_planner1:={nav_system1} local_planner2:={nav_system2}"
launch_simulation(ID, roslaunch_argument)
comm.Barrier()
train_x = torch.zeros((args.total_sample,4), dtype=torch.float32)
train_y = torch.zeros((args.total_sample, ), dtype=torch.float32)
for i in range(0, args.total_sample, num_node):
# save train data as .pt file
if rank == ROOT: # if i==0, use dummy data!
torch.save(dict(features=train_x[:max(i,1),:], observations=train_y[:max(i,1)]), TRAIN_STORAGE)
time.sleep(1.0) # Make sure train data is saved as file
comm.Barrier()
# Run episode to collect data
epsilon = (args.epsilon if local_rank==ROOT else 0.0)
detection_range = args.detection_range # + (0. if local_rank==ROOT else random.uniform(-2., 2.))
time.sleep(local_rank/tasks_per_node)
ep_proc = subprocess.Popen(["singularity", "run", f"instance://{ID}", "python3", "episode/halting_episode.py",
"--train_data_storage", f"{TRAIN_STORAGE}", "--train_iter", f"{args.train_iter}", "--epsilon", f"{epsilon}",
"--detection_range", f"{detection_range}", "--n_sample", f"{args.n_sample}",
"--timeout", f"{args.timeout}", "--reward_constant", f"{args.reward_constant}",
"--result_data_storage", f"/tmp/{ID}.pt"],
stderr=subprocess.DEVNULL)
time.sleep(5.0)
ep_proc.wait()
del ep_proc
gc.collect()
# Load episode result from file
data_dict = torch.load(f"/tmp/{ID}.pt")
data = np.zeros(23, dtype=np.float32)
data[0] = (0.0 if data_dict['mode'] == 'exploit' else 1.0)
data[1:5] = data_dict['features']
data[5] = data_dict['reward']
data[6:8] = data_dict['p_bold']
data[8:10] = data_dict['p_polite']
data[10:12] = data_dict['waypoint']
data[12] = data_dict['success_polite']
data[13] = data_dict['ttd_polite']
data[14] = data_dict['halt_time']
data[15] = data_dict['success_bold']
data[16] = data_dict['ttd_bold']
data[17] = data_dict['computation_time']
data[18] = data_dict['waypoint_mean'].detach().item()
data[19] = data_dict['waypoint_std'].detach().item()
data[20] = data_dict['waypoint_sampled'].item()
data[21] = (1.0 if local_rank==ROOT else 0.0)
data[22] = (local_rank % 6)
# Collect data through MPI channel
if rank==ROOT:
data_buf = np.empty((size,data.shape[0]), dtype=np.float32)
comm.Gather(data, data_buf, root=ROOT)
if rank==ROOT:
train_idx = np.where(data_buf[:,21]>0.5, True, False)
train_x[i+num_node,:] = torch.from_numpy(data_buf[train_idx, 1:5]).float()
train_y[i+num_node] = data_buf[train_idx, 5]
# save new episodic data to csv file
df = pd.DataFrame(data_buf.numpy(), columns=[
'mode', 'x1', 'x2', 'x3', 'x4', 'reward',
'x_bold', 'y_bold', 'x_polite', 'y_polite', 'x_waypoint', 'y_waypoint',
'success_polite', 'TTD_polite', 'TTD_halt', 'success_bold', 'TTD_bold',
't_compute', 'waypoint_mean', 'waypoint_std', 'waypoint_sampled', 'is_train_sample', 'env_setup'
])
if not os.path.exists(CSV_STORAGE):
df.to_csv(CSV_STORAGE, index=False, mode='w', header=True)
else:
df.to_csv(CSV_STORAGE, index=False, mode='a', header=False)
# Log to tensorboard
train_samples = data_buf[train_idx, :]
## train info
logger.add_scalar("computation_time", data_buf[:,17].mean().item(), i)
for k, (reward, ttd_bold, ttd_polite, ttd_halt) in enumerate(train_samples[:,[5,16,13,14]]):
logger.add_scalar(f"TRAIN/reward/{'-'.join(args.base_system)}", reward, i+k)
logger.add_scalar(f"TRAIN/TTD/{'-'.join(args.base_system)}", {"TTD_bold": ttd_bold,
"TTD_polite": ttd_polite,
"TTD_halt": ttd_halt}, i+k)
## test info
eval_samples = data_buf[~train_idx, :]
logger.add_scalars("TEST/reward", {'-'.join(system_setup[0]): eval_samples[np.where(eval_samples[:,22]==0, True, False), 5].mean().item(),
'-'.join(system_setup[1]): eval_samples[np.where(eval_samples[:,22]==1, True, False), 5].mean().item(),
'-'.join(system_setup[2]): eval_samples[np.where(eval_samples[:,22]==2, True, False), 5].mean().item(),
'-'.join(system_setup[3]): eval_samples[np.where(eval_samples[:,22]==3, True, False), 5].mean().item(),
'-'.join(system_setup[4]): eval_samples[np.where(eval_samples[:,22]==4, True, False), 5].mean().item(),
'-'.join(system_setup[5]): eval_samples[np.where(eval_samples[:,22]==5, True, False), 5].mean().item()})
logger.add_scalars("TEST/TTD/polite", {'-'.join(system_setup[0]): eval_samples[np.where(eval_samples[:,22]==0, True, False), 13].mean().item(),
'-'.join(system_setup[1]): eval_samples[np.where(eval_samples[:,22]==1, True, False), 13].mean().item(),
'-'.join(system_setup[2]): eval_samples[np.where(eval_samples[:,22]==2, True, False), 13].mean().item(),
'-'.join(system_setup[3]): eval_samples[np.where(eval_samples[:,22]==3, True, False), 13].mean().item(),
'-'.join(system_setup[4]): eval_samples[np.where(eval_samples[:,22]==4, True, False), 13].mean().item(),
'-'.join(system_setup[5]): eval_samples[np.where(eval_samples[:,22]==5, True, False), 13].mean().item()})
logger.add_scalars("TEST/TTD/halt", {'-'.join(system_setup[0]): eval_samples[np.where(eval_samples[:,22]==0, True, False), 14].mean().item(),
'-'.join(system_setup[1]): eval_samples[np.where(eval_samples[:,22]==1, True, False), 14].mean().item(),
'-'.join(system_setup[2]): eval_samples[np.where(eval_samples[:,22]==2, True, False), 14].mean().item(),
'-'.join(system_setup[3]): eval_samples[np.where(eval_samples[:,22]==3, True, False), 14].mean().item(),
'-'.join(system_setup[4]): eval_samples[np.where(eval_samples[:,22]==4, True, False), 14].mean().item(),
'-'.join(system_setup[5]): eval_samples[np.where(eval_samples[:,22]==5, True, False), 14].mean().item()})
logger.add_scalars("TEST/TTD/bold", {'-'.join(system_setup[0]): eval_samples[np.where(eval_samples[:,22]==0, True, False), 16].mean().item(),
'-'.join(system_setup[1]): eval_samples[np.where(eval_samples[:,22]==1, True, False), 16].mean().item(),
'-'.join(system_setup[2]): eval_samples[np.where(eval_samples[:,22]==2, True, False), 16].mean().item(),
'-'.join(system_setup[3]): eval_samples[np.where(eval_samples[:,22]==3, True, False), 16].mean().item(),
'-'.join(system_setup[4]): eval_samples[np.where(eval_samples[:,22]==4, True, False), 16].mean().item(),
'-'.join(system_setup[5]): eval_samples[np.where(eval_samples[:,22]==5, True, False), 16].mean().item()})
comm.Barrier()
os.system(f"singularity instance stop {ID} > /dev/null 2>&1")