-
Notifications
You must be signed in to change notification settings - Fork 218
/
Copy pathtrain.py
125 lines (89 loc) · 3.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
Paper: "Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network"
Author: Jin Yamanaka
Github: https://github.com/jiny2001/dcscn-image-super-resolution
Ver: 2.0
DCSCN training functions.
Testing Environment: Python 3.6.1, tensorflow >= 1.3.0
"""
import logging
import sys
import tensorflow.compat.v1 as tf
import DCSCN
from helper import args, utilty as util
FLAGS = args.get()
def main(not_parsed_args):
if len(not_parsed_args) > 1:
print("Unknown args:%s" % not_parsed_args)
exit()
model = DCSCN.SuperResolution(FLAGS, model_name=FLAGS.model_name)
if FLAGS.build_batch:
model.load_datasets(FLAGS.data_dir + "/" + FLAGS.dataset, FLAGS.batch_dir + "/" + FLAGS.dataset,
FLAGS.batch_image_size, FLAGS.stride_size)
else:
model.load_dynamic_datasets(FLAGS.data_dir + "/" + FLAGS.dataset, FLAGS.batch_image_size)
model.build_graph()
model.build_optimizer()
model.build_summary_saver()
logging.info("\n" + str(sys.argv))
logging.info("Test Data:" + FLAGS.test_dataset + " Training Data:" + FLAGS.dataset)
util.print_num_of_total_parameters(output_to_logging=True)
total_psnr = total_ssim = 0
for i in range(FLAGS.tests):
psnr, ssim = train(model, FLAGS, i)
total_psnr += psnr
total_ssim += ssim
logging.info("\nTrial(%d) %s" % (i, util.get_now_date()))
model.print_steps_completed(output_to_logging=True)
logging.info("PSNR:%f, SSIM:%f\n" % (psnr, ssim))
if FLAGS.tests > 1:
logging.info("\n=== Final Average [%s] PSNR:%f, SSIM:%f ===" % (
FLAGS.test_dataset, total_psnr / FLAGS.tests, total_ssim / FLAGS.tests))
model.copy_log_to_archive("archive")
def train(model, flags, trial):
test_filenames = util.get_files_in_directory(flags.data_dir + "/" + flags.test_dataset)
if len(test_filenames) <= 0:
print("Can't load images from [%s]" % (flags.data_dir + "/" + flags.test_dataset))
exit()
model.init_all_variables()
if flags.load_model_name != "":
model.load_model(flags.load_model_name, output_log=True)
model.init_train_step()
model.init_epoch_index()
model_updated = True
psnr, ssim = model.evaluate(test_filenames)
model.print_status(psnr, ssim, log=True)
model.log_to_tensorboard(test_filenames[0], psnr, save_meta_data=True)
while model.lr > flags.end_lr:
model.build_input_batch()
model.train_batch()
if model.training_step * model.batch_num >= model.training_images:
# one training epoch finished
model.epochs_completed += 1
psnr, ssim = model.evaluate(test_filenames)
model.print_status(psnr, ssim, log=model_updated)
model.log_to_tensorboard(test_filenames[0], psnr, save_meta_data=model_updated)
model.save_model(trial=trial, output_log=False)
model_updated = model.update_epoch_and_lr()
model.init_epoch_index()
model.end_train_step()
# save last generation anyway
model.save_model(trial=trial, output_log=True)
# outputs result
evaluate_model(model, flags.test_dataset)
if FLAGS.do_benchmark:
for test_data in ['set5', 'set14', 'bsd100']:
if test_data != flags.test_dataset:
evaluate_model(model, test_data)
return psnr, ssim
def evaluate_model(model, test_data):
test_filenames = util.get_files_in_directory(FLAGS.data_dir + "/" + test_data)
total_psnr = total_ssim = 0
for filename in test_filenames:
psnr, ssim = model.do_for_evaluate_with_output(filename, output_directory=FLAGS.output_dir, print_console=False)
total_psnr += psnr
total_ssim += ssim
logging.info("Model Average [%s] PSNR:%f, SSIM:%f" % (
test_data, total_psnr / len(test_filenames), total_ssim / len(test_filenames)))
if __name__ == '__main__':
tf.app.run()