-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathDataImportExample.jl
56 lines (46 loc) · 1.77 KB
/
DataImportExample.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Pkg.add("DataRead") # calls ReadStat, which is an MIT-licensed C library for reading binary files from popular stats software packages
# using DataRead # only works on Mac OS!
# read_dta("auto.dta") # example usage
## Interface with Matlab Objects
# Pkg.add("MAT")
using MAT
# Read Matlab dataset
vars = matread("carbig.mat")
Weight = vars["Weight"]
Acceleration = vars["Acceleration"]
Mfg = vars["Mfg"]
cyl4 = vars["cyl4"]
Origin = vars["Origin"]
when = vars["when"]
Displacement = vars["Displacement"]
MPG = vars["MPG"]
Model = vars["Model"]
Cylinders = vars["Cylinders"]
org = vars["org"]
Model_Year = vars["Model_Year"]
Horsepower = vars["Horsepower"]
# Write Matlab dataset
X=rand(50000,5)
matwrite("tester.mat", Dict(
"X" => X,
"Acceleration" => Acceleration,
"Horsepower" => Horsepower
))
## Interface with CSVs
# Pkg.add("DataFrames")
using DataFrames
# import CSV to Data Frame (e.g. from Stata, R, Matlab, Python)
autoDF = readtable("auto.csv")
autoDF = readtable("auto.csv", nastrings=["", "na", "n/a", "missing"])
# export Data Frame to CSV (e.g. to Stata, R, Matlab, Python)
writetable("auto1.csv", autoDF)
writetable("auto1.csv", autoDF, separator = ',', header = false)
# export Data Frame to tab-delimited file (e.g. to Stata, R, Matlab, Python)
writetable("auto1.dat", autoDF, separator = '\t')
# import CSV to Data Frame (e.g. from Stata, R, Matlab, Python)
autoDF = readtable("auto.csv")
autoDF = readtable("auto.csv", nastrings=["", "na", "n/a", "missing"])
# import Julia array to tab-delimited file (e.g. to Stata, R, Matlab, Python)
writedlm("auto1.dat", autoDF, delim = '\t')
# export Julia array to tab-delimited file (e.g. to Stata, R, Matlab, Python)
writedlm("auto1.dat", autoDF, delim = '\t')