diff --git a/dev/testing.md b/dev/testing.md index 00ebc9d..b5fec61 100644 --- a/dev/testing.md +++ b/dev/testing.md @@ -9,6 +9,10 @@ docker-compose up -d docker-compose exec main pip install -r dev/docker-m1-requirements.txt docker-compose exec main pytest +# To skip the multithread tests ... +docker-compose exec main pytest -m "not omit_during_ghactions" + + ``` ## Ubuntu 22 diff --git a/pyproject.toml b/pyproject.toml index 531b567..ddde791 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,7 +11,7 @@ exclude = [ [project] name = "birdnetlib" -version = "0.15.0" +version = "0.16.0" authors = [ { name="Joe Weiss", email="joe.weiss@gmail.com" }, ] diff --git a/src/birdnetlib/analyzer.py b/src/birdnetlib/analyzer.py index 2b139a0..7dba198 100644 --- a/src/birdnetlib/analyzer.py +++ b/src/birdnetlib/analyzer.py @@ -410,45 +410,36 @@ def load_custom_list(self): print(len(species_list), "species loaded.") # Custom models. + def _return_embeddings(self, data): + self.interpreter.resize_tensor_input( + self.input_layer_index, [len(data), *data[0].shape] + ) + self.interpreter.allocate_tensors() + # Extract feature embeddings + self.interpreter.set_tensor( + self.input_layer_index, np.array(data, dtype="float32") + ) + self.interpreter.invoke() + features = self.interpreter.get_tensor(self.output_layer_index) + return features def predict_with_custom_classifier(self, sample): - # print("predict_with_custom_classifier") - data = np.array([sample], dtype="float32") - # print(data[0]) - - # Make a prediction (Audio only for now) - INTERPRETER = self.interpreter - INPUT_LAYER_INDEX = self.input_layer_index - OUTPUT_LAYER_INDEX = self.output_layer_index - - INTERPRETER.resize_tensor_input(INPUT_LAYER_INDEX, [len(data), *data[0].shape]) - INTERPRETER.allocate_tensors() - - # Extract feature embeddings - INTERPRETER.set_tensor(INPUT_LAYER_INDEX, np.array(data, dtype="float32")) - INTERPRETER.invoke() - features = INTERPRETER.get_tensor(OUTPUT_LAYER_INDEX) - - feature_vector = features - - C_INTERPRETER = self.custom_interpreter - C_INPUT_LAYER_INDEX = self.custom_input_layer_index - C_OUTPUT_LAYER_INDEX = self.custom_output_layer_index - - C_INTERPRETER.resize_tensor_input( - C_INPUT_LAYER_INDEX, [len(feature_vector), *feature_vector[0].shape] + input_details = self.custom_interpreter.get_input_details() + input_size = input_details[0]["shape"][-1] + feature_vector = self._return_embeddings(data) if input_size != 144000 else data + self.custom_interpreter.resize_tensor_input( + self.custom_input_layer_index, + [len(feature_vector), *feature_vector[0].shape], ) - C_INTERPRETER.allocate_tensors() + self.custom_interpreter.allocate_tensors() # Make a prediction - C_INTERPRETER.set_tensor( - C_INPUT_LAYER_INDEX, np.array(feature_vector, dtype="float32") + self.custom_interpreter.set_tensor( + self.custom_input_layer_index, np.array(feature_vector, dtype="float32") ) - C_INTERPRETER.invoke() - prediction = C_INTERPRETER.get_tensor(C_OUTPUT_LAYER_INDEX) - - # print(prediction) + self.custom_interpreter.invoke() + prediction = self.custom_interpreter.get_tensor(self.custom_output_layer_index) # Logits or sigmoid activations? APPLY_SIGMOID = True @@ -457,7 +448,6 @@ def predict_with_custom_classifier(self, sample): prediction = self.flat_sigmoid( np.array(prediction), sensitivity=-SIGMOID_SENSITIVITY ) - return prediction def load_custom_models(self):