-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRun.py
68 lines (55 loc) · 2.21 KB
/
Run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import Network as n1
import Network2 as n2
import timeit
from theano import function, config, shared, tensor
import numpy
import time
def checkGPU():
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], tensor.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in range(iters):
r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters, t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, tensor.Elemwise) and
('Gpu' not in type(x.op).__name__)
for x in f.maker.fgraph.toposort()]):
print('Used the cpu')
else:
print('Used the gpu')
def main():
checkGPU()
training_data, validation_data, test_data = n2.load_data_shared()
mini_batch_size = 20
# net = n1.Network([784, 30, 10], cost=n1.Network.CrossEntropy, debug=True)
net = n2.Network([n2.ConvPoolLayer(input_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2)),
n2.ConvPoolLayer(input_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2)),
n2.FullyConnectedLayer(n_in=40*4*4, n_out=100),
n2.FullyConnectedLayer(n_in=100, n_out=100),
n2.SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
'''
net = n2.Network([
n2.ConvPoolLayer(input_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2)),
n2.FullyConnectedLayer(n_in=20 * 12 * 12, n_out=100),
n2.SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
'''
print "Starting"
start_time = timeit.default_timer()
net.SGD(training_data,60, mini_batch_size, 0.03, validation_data, test_data, lmbda=0.1)
#net.SGD(training_data, 30, 10, 0.1, decay=5.0, test_data=test_data, early_stop=10)
elapsed = timeit.default_timer() - start_time
print "Elapsed time " + str(elapsed)
if __name__ == "__main__":
main()