-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_2d_r2r_e10_o10.c
67 lines (50 loc) · 1.67 KB
/
test_2d_r2r_e10_o10.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <fftw3.h>
#include "util.h"
int test_2d_r2r_e10_o10(int n0, int n1) {
double *in = fftw_alloc_real(n0 * n1);
double *out = fftw_alloc_real(n0 * n1);
double *ref_out = fftw_alloc_real(n0 * n1);
fftw_plan p = fftw_plan_r2r_2d(n0, n1, in, out, FFTW_REDFT10, FFTW_RODFT10, FFTW_ESTIMATE);
// random input
fill_random_2d_real(n0, n1, in);
// manually compute DFT for reference
int idx_k, idx_j;
double basis_0, basis_1;
for (int k0 = 0; k0 < n0; ++k0) {
for (int k1 = 0; k1 < n1; ++k1) {
idx_k = k0 * n1 + k1;
ref_out[idx_k] = 0.0;
for (int j0 = 0; j0 < n0; ++j0) {
for (int j1 = 0; j1 < n1; ++j1) {
idx_j = j0 * n1 + j1;
// REDFT10 in first dimension
basis_0 = 2.0 * cos(M_PI * (j0 + 0.5) * k0 / ((double) n0));
// RODFT10 in second dimension
basis_1 = 2.0 * sin(M_PI * (j1 + 0.5) * (k1 + 1.0) / ((double) n1));
ref_out[idx_k] += in[idx_j] * basis_0 * basis_1;
}
}
}
}
fftw_execute(p);
// compare outputs
double eps = 1.0e-12;
int status = compare_2d_real(n0, n1, ref_out, out, eps);
fftw_destroy_plan(p);
fftw_free(in);
fftw_free(out);
fftw_free(ref_out);
return status;
}
int main(int argc, char **argv) {
int status = 0;
status += test_2d_r2r_e10_o10(4, 4);
status += test_2d_r2r_e10_o10(4, 5);
status += test_2d_r2r_e10_o10(5, 4);
status += test_2d_r2r_e10_o10(5, 5);
return status;
}