-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathModules.py
134 lines (103 loc) · 4.79 KB
/
Modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F
from Constants import USE_CUDA
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, latent_size=10, n_layers=1):
super(Encoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.Wmu = nn.Linear(hidden_size, latent_size)
self.Wsigma = nn.Linear(hidden_size, latent_size)
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, batch_first=True)
def reparametrize(self, mu, log_var):
""""z = mean + eps * sigma where eps is sampled from N(0, 1)."""
eps = Variable(torch.randn(mu.size(0), mu.size(1))).cuda() if USE_CUDA else Variable(
torch.randn(mu.size(0), mu.size(1)))
z = mu + eps * torch.exp(log_var / 2) # 2 for convert var to std
return z
def forward(self, input, train=True):
hidden = Variable(torch.zeros(self.n_layers, input.size(0), self.hidden_size)).cuda() if USE_CUDA else Variable(
torch.zeros(self.n_layers, input.size(0), self.hidden_size))
embedded = self.embedding(input)
output, hidden = self.gru(embedded, hidden)
mu = self.Wmu(hidden[-1])
log_var = self.Wsigma(hidden[-1])
z = self.reparametrize(mu, log_var)
return z, mu, log_var
class Generator(nn.Module):
def __init__(self, hidden_size, output_size, latent_size=10, code_size=2, n_layers=1):
super(Generator, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
# self.Wz = nn.Linear(latent_size+code_size,hidden_size)
self.Wz = nn.Linear(latent_size, hidden_size)
self.tanh = nn.Tanh()
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
# self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size, self.n_layers, batch_first=True)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, latent, code, lengths, seq_length, training=True):
embedded = self.embedding(input)
# embedded = self.dropout(embedded)
# h0
# latent_code = torch.cat((latent,code),1) # z,c
# hidden = self.tanh(self.Wz(latent_code)).view(self.n_layers,input.size(0),-1)
hidden = self.tanh(self.Wz(latent)).view(self.n_layers, input.size(0), -1)
decode = []
# Apply GRU to the output so far
for i in range(seq_length):
_, hidden = self.gru(embedded, hidden)
score = self.out(hidden.view(hidden.size(0) * hidden.size(1), -1))
softmaxed = F.log_softmax(score, dim=1)
decode.append(softmaxed)
_, input = torch.max(softmaxed, 1)
embedded = self.embedding(input.unsqueeze(1))
# embedded = self.dropout(embedded)
scores = torch.cat(decode, 1)
return scores.view(input.size(0) * seq_length, -1)
class Discriminator(nn.Module):
def __init__(self, embed_num, embed_dim, class_num, kernel_num, kernel_sizes, dropout):
super(Discriminator, self).__init__()
V = embed_num # num of vocab
D = embed_dim # dimenstion of word vector
C = class_num # num of class
Ci = 1
Co = kernel_num # 100
Ks = kernel_sizes # [3,4,5]
self.embed = nn.Embedding(V, D)
# self.convs1 = [nn.Conv2d(Ci, Co, (K, D)) for K in Ks]
self.convs1 = nn.ModuleList([nn.Conv2d(Ci, Co, (K, D)) for K in Ks])
'''
self.conv13 = nn.Conv2d(Ci, Co, (3, D))
self.conv14 = nn.Conv2d(Ci, Co, (4, D))
self.conv15 = nn.Conv2d(Ci, Co, (5, D))
'''
self.dropout = nn.Dropout(dropout)
self.fc1 = nn.Linear(len(Ks) * Co, C)
def conv_and_pool(self, x, conv):
x = F.relu(conv(x)).squeeze(3) # (N,Co,W)
x = F.max_pool1d(x, x.size(2)).squeeze(2)
return x
def forward(self, x, train=True):
x = self.embed(x) # (N,W,D)
# if self.args.static:
# x = Variable(x)
x = x.unsqueeze(1) # (N,Ci,W,D)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1] # [(N,Co,W), ...]*len(Ks)
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] # [(N,Co), ...]*len(Ks)
x = torch.cat(x, 1)
'''
x1 = self.conv_and_pool(x,self.conv13) #(N,Co)
x2 = self.conv_and_pool(x,self.conv14) #(N,Co)
x3 = self.conv_and_pool(x,self.conv15) #(N,Co)
x = torch.cat((x1, x2, x3), 1) # (N,len(Ks)*Co)
'''
if train:
x = self.dropout(x) # (N,len(Ks)*Co)
logit = self.fc1(x) # (N,C)
return logit