forked from ITT-21SS-UR/assignment9-mm9
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdollar_one_utils.py
106 lines (79 loc) · 3.22 KB
/
dollar_one_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
All functions below, unless otherwise noted, have been implemented based on the pseudocode in the original paper on the
1$ recognizer:
Wobbrock, J. O., Wilson, A. D., & Li, Y. (2007, October). Gestures without libraries, toolkits or training:
a $1 recognizer for user interface prototypes. In Proceedings of the 20th annual ACM symposium on User
interface software and technology (pp. 159-168).
"""
import sys
import numpy as np
def degree_to_radians(degree):
return degree * np.pi / 180.0
def calc_euclidean_distance(p1, p2):
# Pythagorean theorem
a = p2[0] - p1[0]
b = p2[1] - p1[1]
return np.sqrt(a**2 + b**2)
# alternatively: return np.linalg.norm(p1 - p2)
def calc_path_length(points):
distance = 0.0
for i in range(1, len(points)):
last_point = points[i-1]
current_point = points[i]
distance += calc_euclidean_distance(last_point, current_point)
return distance
def calc_path_distance(A, B):
if len(A) != len(B):
print("Error! Samples A and B are not equal in length!")
sys.exit(1)
distance = 0
for i in range(1, len(A)):
distance += calc_euclidean_distance(A[i], B[i])
return distance / len(A)
def calc_centroid(points: np.ndarray):
"""
Function taken from the provided "Computational Geometry for Gesture Recognition" notebook.
"""
xs, ys = zip(*points)
return (sum(xs) / len(xs), sum(ys) / len(ys))
def rotate_by(points, angle):
centroid = calc_centroid(points)
rotated_points = []
for point in points:
# calculate the distance of this point to the centroid of all points
centroid_dist_x = point[0] - centroid[0]
centroid_dist_y = point[1] - centroid[1]
p_x = centroid_dist_x * np.cos(angle) - centroid_dist_y * np.sin(angle) + centroid[0]
p_y = centroid_dist_x * np.sin(angle) + centroid_dist_y * np.cos(angle) + centroid[1]
rotated_point = [p_x, p_y]
rotated_points.append(rotated_point)
return rotated_points
def get_bounding_box(points):
# get min and max values along the first axis (i.e. column-wise) as we only have to columns (x and y)
min_point = np.min(points, axis=0)
max_point = np.max(points, axis=0)
return [(min_point[0], min_point[1]), (max_point[0], max_point[1])]
def calc_dist_at_angle(points, template, angle):
new_points = rotate_by(points, angle)
distance = calc_path_distance(new_points, template)
return distance
def calc_dist_at_best_angle(points, template, angle_a, angle_b, angle_delta):
phi = 0.5 * (-1 + np.sqrt(5)) # value for phi taken from the paper
x1 = phi * angle_a + (1 - phi) * angle_b
x2 = (1 - phi) * angle_a + phi * angle_b
f1 = calc_dist_at_angle(points, template, x1)
f2 = calc_dist_at_angle(points, template, x2)
while np.abs(angle_b - angle_a) > angle_delta:
if f1 < f2:
angle_b = x2
x2 = x1
f2 = f1
x1 = phi * angle_a + (1 - phi) * angle_b
f1 = calc_dist_at_angle(points, template, x1)
else:
angle_a = x1
x1 = x2
f1 = f2
x2 = (1 - phi) * angle_a + phi * angle_b
f2 = calc_dist_at_angle(points, template, x2)
return min(f1, f2)