-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpowerIteration.py
68 lines (53 loc) · 1.44 KB
/
powerIteration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import scipy as sc
from scipy import io as io
from matplotlib import pyplot as plt
from numpy import linalg
import copy
eVectors = []
eValues = []
def powerIteration(a):
j,k = a.shape
v = np.matrix(np.ones((128,1)))
for j in range(0,2):
l= 0
for i in range(1,100000):
x = l
v = a*v
l = np.linalg.norm(v)
v = v/l
if abs(l-x) < 0.005:
eVectors.append(v)
eValues.append(l)
a = a - l*v*np.transpose(v)
v = np.matrix(np.ones((128,1)))
break
def colorM(a):
fig = plt.figure(1)
fig.clf()
ax = fig.add_subplot(1, 1, 1)
cax = ax.imshow(a)
fig.colorbar(cax)
plt.show()
def plotEigen(E):
P = copy.deepcopy(E)
K = P
for i in range(0,10):
K = np.concatenate([K,P])
K = K.reshape((11,128))
colorM(np.transpose(K))
flute = io.loadmat("./flute.mat")
T = np.array(flute.get('X'))
cov = np.cov(T)
powerIteration(cov)
colorM(T)
plotEigen(eVectors[0])
plotEigen(eVectors[1])
u1 = np.dot(np.transpose(cov),eVectors[0])/np.linalg.norm(np.dot(np.transpose(eVectors[0]),cov))
u2 = np.dot(np.transpose(cov),eVectors[1])/np.linalg.norm(np.dot(np.transpose(eVectors[0]),cov))
plotEigen(u1)
plotEigen(u2)
final1 = np.dot(np.transpose(eVectors[0]*eValues[0]),u1)
colorM(final1)
final2 = np.dot(np.transpose(eVectors[1]*eValues[1]),u1)
colorM(final2)