-
Notifications
You must be signed in to change notification settings - Fork 1
/
supplementary_tools.py
716 lines (613 loc) · 21.7 KB
/
supplementary_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
'''
This script contains tools for use in my various plotting routines, including
the soundingmaps.
'''
#### IMPORTS ####
from datetime import datetime
import datetime as dt
import numpy as np
from metpy.units import units
import metpy.calc as mpcalc
import matplotlib.pyplot as plt
#### DATA FETCH HELPER FUNCTIONS ####
def get_init_time(model):
'''
This function will return date and run hour information to select the most
current run of a given model.
Input: model (string) currently supported 'HRRR','NAM','GFS','RTMA','RAP'
Output: [mdate,init_hr] strings mdate=YYYYMMDD current run init_hr = HH.
'''
current_time = datetime.utcnow()
year = current_time.year
month = current_time.month
day = current_time.day
hour = current_time.hour
if model=='HRRR':
if hour <3:
init_time = current_time-dt.timedelta(hours=3)
init_hour = '18'
day = init_time.day
month = init_time.month
year = init_time.year
elif hour<9:
init_hour = '00'
elif hour<14:
init_hour = '06'
elif hour<21:
init_hour = '12'
else:
init_hour = '18'
elif model=='NAM':
if hour <4:
init_time = current_time-dt.timedelta(hours=3)
init_hour = '18'
day = init_time.day
month = init_time.month
year = init_time.year
elif hour<10:
init_hour = '00'
elif hour<16:
init_hour = '06'
elif hour<22:
init_hour = '12'
else:
init_hour = '18'
elif model=='GFS':
if hour <5:
init_time = current_time-dt.timedelta(hours=3)
init_hour = '18'
day = init_time.day
month = init_time.month
year = init_time.year
elif hour<11:
init_hour = '00'
elif hour<17:
init_hour = '06'
elif hour<23:
init_hour = '12'
else:
init_hour = '18'
elif model=='RTMA':
minute = current_time.minute
if minute>50:
init_hour = current_time.hour
if float(init_hour) <10:
init_hour = '0'+str(init_hour)
else:
init_hour = str(init_hour)
else:
time = current_time-dt.timedelta(hours=1)
init_hour = time.hour
if float(init_hour) <10:
init_hour = '0'+str(init_hour)
else:
init_hour = str(init_hour)
elif model=='RAP':
minute = current_time.minute
if minute<10:
time = current_time-dt.timedelta(hours=2)
init_hour = str(time.hour)
if float(init_hour) <10:
init_hour = '0'+str(init_hour)
else:
init_hour = str(init_hour)
else:
time = current_time-dt.timedelta(hours=1)
init_hour = str(time.hour)
if float(init_hour) <10:
init_hour = '0'+str(init_hour)
else:
init_hour = str(init_hour)
if month <10:
month = '0'+str(month)
else:
month = str(month)
if day <10:
day = '0'+str(day)
else:
day = str(day)
if hour <10:
hour = '0'+str(hour)
else:
hour = str(hour)
mdate = str(year)+month+day
output = [mdate,init_hour]
return output
def get_prev_init_time(model):
'''
This function will return date and run hour information for the previous
forecast cycle of a given model. This is useful for analysis of model trends.
Input: model (string) currently supported 'HRRR','NAM','GFS'
Output: [mdate,init_hr] strings mdate=YYYYMMDD current run init_hr = HH.
'''
current_time = datetime.utcnow()
year = current_time.year
month = current_time.month
day = current_time.day
hour = current_time.hour
if model=='HRRR':
if hour <3:
init_time = current_time-dt.timedelta(hours=3)
init_hour = '18'
prev_init_hour = '12'
day = piday = init_time.day
month = pimonth = init_time.month
year = piyear= init_time.year
elif hour<9:
init_hour = '00'
prev_init_hour = '18'
prev_init_time = current_time-dt.timedelta(hours=9)
piday = prev_init_time.day
pimonth = prev_init_time.month
piyear = prev_init_time.year
elif hour<15:
init_hour = '06'
prev_init_hour = '00'
piday = day
pimonth = month
piyear = year
elif hour<21:
init_hour = '12'
prev_init_hour = '06'
piday = day
pimonth = month
piyear = year
else:
init_hour = '18'
prev_init_hour = '12'
piday = day
pimonth = month
piyear = year
elif model=='NAM':
if hour <4:
init_time = current_time-dt.timedelta(hours=4)
init_hour = '18'
prev_init_hour = '12'
day = piday = init_time.day
month = pimonth = init_time.month
year = piyear= init_time.year
elif hour<10:
init_hour = '00'
prev_init_hour = '18'
prev_init_time = current_time-dt.timedelta(hours=10)
piday = prev_init_time.day
pimonth = prev_init_time.month
piyear = prev_init_time.year
elif hour<16:
init_hour = '06'
prev_init_hour = '00'
piday = day
pimonth = month
piyear = year
elif hour<22:
init_hour = '12'
prev_init_hour = '06'
piday = day
pimonth = month
piyear = year
else:
init_hour = '18'
prev_init_hour = '12'
piday = day
pimonth = month
piyear = year
elif model=='GFS':
if hour <5:
init_time = current_time-dt.timedelta(hours=5)
init_hour = '18'
prev_init_hour = '12'
day = piday = init_time.day
month = pimonth = init_time.month
year = piyear= init_time.year
elif hour<11:
init_hour = '00'
prev_init_hour = '18'
prev_init_time = current_time-dt.timedelta(hours=11)
piday = prev_init_time.day
pimonth = prev_init_time.month
piyear = prev_init_time.year
elif hour<16:
init_hour = '06'
prev_init_hour = '00'
piday = day
pimonth = month
piyear = year
elif hour<22:
init_hour = '12'
prev_init_hour = '06'
piday = day
pimonth = month
piyear = year
else:
init_hour = '18'
prev_init_hour = '12'
piday = day
pimonth = month
piyear = year
if month <10:
month = '0'+str(month)
else:
month = str(month)
if day <10:
day = '0'+str(day)
else:
day = str(day)
if hour <10:
hour = '0'+str(hour)
else:
hour = str(hour)
if pimonth <10:
pimonth = '0'+str(pimonth)
else:
pimonth = str(pimonth)
if piday <10:
piday = '0'+str(piday)
else:
piday = str(piday)
mdate = str(piyear)+pimonth+piday
output = [mdate,prev_init_hour]
return output
def get_url(model):
'''
Return the NOMADS URL for a model of choice. Currently supported options are
GFS, NAM, HRRR, RAP
'''
mdate = get_init_time(model)[0]
init_hour = get_init_time(model)[1]
if model == 'HRRR':
url = 'http://nomads.ncep.noaa.gov:80/dods/hrrr/hrrr'+mdate+'/hrrr_sfc.t'+init_hour+'z'
elif model == 'NAM':
url = 'http://nomads.ncep.noaa.gov:80/dods/nam/nam'+mdate+'/nam_'+init_hour+'z'
elif model == 'GFS':
url = 'http://nomads.ncep.noaa.gov:80/dods/gfs_0p25_1hr/gfs'+mdate+'/gfs_0p25_1hr_'+init_hour+'z'
elif model == 'RAP':
url = 'http://nomads.ncep.noaa.gov:80/dods/rap/rap'+mdate+'/rap_'+init_hour+'z'
return url
def get_num_timesteps(model):
'''
Return the number and width of time steps to query for a given model.
Currently supported options are GFS, NAM, HRRR, RAP
'''
if model =='GFS':
etime = 121
delt = 1
elif model == 'NAM':
etime = 28
delt = 3
elif model == 'HRRR':
etime = 49
delt = 1
elif model == 'RAP':
etime = 37
delt = 1
return [etime,delt]
def get_varlist(model):
'''
Each model has slightly different variable names. This function will return
a dictionary that renames the right variables to the right things depending
on which model you want. Currently supported options are GFS, NAM, HRRR, RAP
'''
if model == 'RAP':
vars = {
'cfrzrsfc':'catice',
'cicepsfc':'catsleet',
'crainsfc':'catrain',
'csnowsfc':'catsnow',
'tmpprs': 'temperature',
'mslmamsl':'mslp',
'tmp2m':'sfc_temp',
'dpt2m':'sfc_td',
'refcclm':'radar',
'rhprs':'rh',
'capesfc':'cape',
'ugrd10m':'u',
'vgrd10m':'v',
'pressfc':'spres'
}
elif model == 'HRRR':
vars = {
'cfrzrsfc':'catice',
'cicepsfc':'catsleet',
'crainsfc':'catrain',
'csnowsfc':'catsnow',
'tcdcclm':'tcc',
'tmpprs': 'temperature',
'ugrd10m': 'u',
'vgrd10m': 'v',
'mslmamsl':'mslp',
'tmp2m':'sfc_temp',
'dpt2m':'sfc_td',
'refcclm':'radar',
'apcpsfc':'qpf',
'capesfc':'cape',
'gustsfc':'sfcgust',
'hcdchcll':'high_cloud',
'mcdcmcll':'mid_cloud',
'lcdclcll':'low_cloud',
'vissfc':'sfcvis',
'hgt263_k':'hgt_m10c',
'hgt253_k':'hgt_m20c',
'ltngclm':'lightning',
'sbt124toa':'simsat',
'hgt0c':'0chgt'
}
elif model == 'NAM':
vars = {
'cfrzrsfc':'catice',
'cicepsfc':'catsleet',
'crainsfc':'catrain',
'csnowsfc':'catsnow',
'tcdcclm':'tcc',
'tmpprs': 'temperature',
'ugrd10m': 'u',
'vgrd10m': 'v',
'hgtprs': 'height',
'prmslmsl':'mslp',
'tmp2m':'sfc_temp',
'dpt2m':'sfc_td',
'refcclm':'radar',
'apcpsfc':'qpf',
'rhprs':'rh',
'capesfc':'cape',
'pressfc':'spres'
}
elif model == 'GFS':
vars = {
'cfrzrsfc':'catice',
'cicepsfc':'catsleet',
'crainsfc':'catrain',
'csnowsfc':'catsnow',
'tcdcclm':'tcc',
'tmpprs': 'temperature',
'ugrd10m': 'u',
'vgrd10m': 'v',
'hgtprs': 'height',
'prmslmsl':'mslp',
'tmp2m':'sfc_temp',
'dpt2m':'sfc_td',
'refcclm':'radar',
'apcpsfc':'qpf',
'rhprs':'rh',
'capesfc':'cape',
'pressfc':'spres'
}
return vars
#### CALCULATION OF METEOROLOGICAL VARIABLES ####
def wet_bulb(temp,dewpoint):
'''
This uses the simple 1/3 rule to compute wet bulb temperatures from temp and
dew point values/arrays. See Knox et. al (2017) in BAMS for more info about
this approximation and when it is most reliable.
Input: temp, dewpoint either values or arrays
Output: wet_bulb either values or arrays depending on input
'''
tdd = temp-dewpoint
wet_bulb = temp-((1/3)*tdd)
return wet_bulb
def wetbulb_with_nan(pressure,temperature,dewpoint):
'''
This function uses the MetPy wet_bulb_temperature method to calculate the
actual wet bulb temperature using pressure, temperature, and dew point info.
Inputs: pressure, temperature, dewpoint pint arrays
Output: wetbulb_full pint array
This function was constructed using code graciously suggested by Jon Thielen
'''
nan_mask = np.isnan(pressure) | np.isnan(temperature) | np.isnan(dewpoint)
idx = np.arange(pressure.size)[~nan_mask]
wetbulb_valid_only = mpcalc.wet_bulb_temperature(pressure[idx], temperature[idx], dewpoint[idx])
wetbulb_full = np.full(pressure.size, np.nan) * wetbulb_valid_only.units
wetbulb_full[idx] = wetbulb_valid_only
return wetbulb_full
def fram(ice,wet_bulb,velocity):
'''
This function computes ice accretion values using the Freezing Rain Accumulation
Model method outlined in Sanders and Barjenbruch (2016) in WAF.
Inputs: ice, wet_bulb, velocity which are arrays containing QPF falling as
ZR, wet bulb temperature, and wind speed information. Units are inches per hour,
degrees celsius, and knots respectively.
Output: ice accretion array in units of inches.
'''
ilr_p = ice
ilr_t = (-0.0071*(wet_bulb**3))-(0.039*(wet_bulb**2))-(0.3904*wet_bulb)+0.5545
ilr_v = (0.0014*(velocity**2))+(0.0027*velocity)+0.7574
cond_1 = np.ma.masked_where(wet_bulb>-0.35,ice)
cond_2 = np.ma.masked_where((wet_bulb<-0.35) & (velocity>12.),ice)
cond_3 = np.ma.masked_where((wet_bulb<-0.35) & (velocity<=12.),ice)
cond_1 = cond_1.filled(0)
cond_2 = cond_2.filled(0)
cond_3 = cond_3.filled(0)
ilr_1 = (0.7*ilr_p)+(0.29*ilr_t)+(0.01*ilr_v)
ilr_2 = (0.73*ilr_p)+(0.01*ilr_t)+(0.26*ilr_v)
ilr_3 = (0.79*ilr_p)+(0.2*ilr_t)+(0.01*ilr_v)
accretion_1 = cond_1*ilr_1
accretion_2 = cond_2*ilr_2
accretion_3 = cond_3*ilr_3
total_accretion=accretion_1+accretion_2+accretion_3
return total_accretion
#### FIGURE TOOLS ####
def addcapecolorbar(ax,fig,im,clevs):
'''
This function adds a new colorbar on its own axes for CAPE
Inputs: ax, fig are matplotlib axis/figure objects, im is the contourf object,
and clevs is the contour levels used in the contourf plot
Outputs: just call it and it'll put the colorbar in the right place
This code was adapted from Dr. Kim Wood's Community Tools repo
'''
axes_bbox = ax.get_position()
left = axes_bbox.x0
bottom = 0.17
width = 0.38
height = 0.01
cax = fig.add_axes([left, bottom, width, height])
cbar = plt.colorbar(im, cax=cax, ticks=clevs, orientation='horizontal')
#cbar.ax.xaxis.set_ticks_position('top')
cbar.ax.tick_params(labelsize=8)
cbar.set_label('Surface-Based CAPE (J/kg)', size=8) # MODIFY THIS for other fields!!
def addwintercapecolorbar(ax,fig,im,clevs):
'''
This function adds a new colorbar on its own axes for CAPE
Inputs: ax, fig are matplotlib axis/figure objects, im is the contourf object,
and clevs is the contour levels used in the contourf plot
Outputs: just call it and it'll put the colorbar in the right place
This code was adapted from Dr. Kim Wood's Community Tools repo
'''
axes_bbox = ax.get_position()
left = axes_bbox.x0
bottom = 0.16
width = 0.8
height = 0.01
cax = fig.add_axes([left, bottom, width, height])
cbar = plt.colorbar(im, cax=cax, ticks=clevs, orientation='horizontal')
#cbar.ax.xaxis.set_ticks_position('top')
cbar.ax.tick_params(labelsize=8)
cbar.set_label('Surface-Based CAPE (J/kg)', size=8) # MODIFY THIS for other fields!!
def addrefcolorbar(ax,fig,im,clevs):
'''
This function adds a new colorbar on its own axes for reflectivity
Inputs: ax, fig are matplotlib axis/figure objects, im is the contourf object,
and clevs is the contour levels used in the contourf plot
Outputs: just call it and it'll put the colorbar in the right place
This code was adapted from Dr. Kim Wood's Community Tools repo
'''
axes_bbox = ax.get_position()
left = axes_bbox.x0 + 0.39
bottom = 0.17
width = 0.38
height = 0.01
cax = fig.add_axes([left, bottom, width, height])
cbar = plt.colorbar(im, cax=cax, ticks=clevs, orientation='horizontal')
#cbar.ax.xaxis.set_ticks_position('top')
cbar.ax.tick_params(labelsize=8)
cbar.set_label('Composite Reflectivity (dBZ)', size=8) # MODIFY THIS for other fields!!
def addwinterrefcolorbar(ax,fig,im,clevs):
'''
This function adds a new colorbar on its own axes for reflectivity
Inputs: ax, fig are matplotlib axis/figure objects, im is the contourf object,
and clevs is the contour levels used in the contourf plot
Outputs: just call it and it'll put the colorbar in the right place
This code was adapted from Dr. Kim Wood's Community Tools repo
'''
axes_bbox = ax.get_position()
left = axes_bbox.x0 + 0.78
bottom = 0.2
width = 0.01
height = 0.15
cax = fig.add_axes([left, bottom, width, height])
cbar = plt.colorbar(im, cax=cax, ticks=clevs, orientation='vertical')
#cbar.ax.xaxis.set_ticks_position('top')
cbar.ax.tick_params(labelsize=8)
cbar.set_label('Rain (dBZ)', size=8) # MODIFY THIS for other fields!!
def addsnowcolorbar(ax,fig,im,clevs):
'''
This function adds a new colorbar on its own axes for reflectivity in winter plots
Inputs: ax, fig are matplotlib axis/figure objects, im is the contourf object,
and clevs is the contour levels used in the contourf plot
Outputs: just call it and it'll put the colorbar in the right place
This code was adapted from Dr. Kim Wood's Community Tools repo
'''
axes_bbox = ax.get_position()
left = axes_bbox.x0 + 0.78
bottom = 0.68
width = 0.01
height = 0.15
cax = fig.add_axes([left, bottom, width, height])
cbar = plt.colorbar(im, cax=cax, ticks=clevs, orientation='vertical')
#cbar.ax.xaxis.set_ticks_position('top')
cbar.ax.tick_params(labelsize=8)
cbar.set_label('Snow (dBZ)', size=8) # MODIFY THIS for other fields!!
def addsleetcolorbar(ax,fig,im,clevs):
'''
This function adds a new colorbar on its own axes for reflectivity in winter plots
Inputs: ax, fig are matplotlib axis/figure objects, im is the contourf object,
and clevs is the contour levels used in the contourf plot
Outputs: just call it and it'll put the colorbar in the right place
This code was adapted from Dr. Kim Wood's Community Tools repo
'''
axes_bbox = ax.get_position()
left = axes_bbox.x0 + 0.78
bottom = 0.52
width = 0.01
height = 0.15
cax = fig.add_axes([left, bottom, width, height])
cbar = plt.colorbar(im, cax=cax, ticks=clevs, orientation='vertical')
#cbar.ax.xaxis.set_ticks_position('top')
cbar.ax.tick_params(labelsize=8)
cbar.set_label('Sleet (dBZ)', size=8) # MODIFY THIS for other fields!!
def addicecolorbar(ax,fig,im,clevs):
'''
This function adds a new colorbar on its own axes for reflectivity in winter plots
Inputs: ax, fig are matplotlib axis/figure objects, im is the contourf object,
and clevs is the contour levels used in the contourf plot
Outputs: just call it and it'll put the colorbar in the right place
This code was adapted from Dr. Kim Wood's Community Tools repo
'''
axes_bbox = ax.get_position()
left = axes_bbox.x0 + 0.78
bottom = 0.36
width = 0.01
height = 0.15
cax = fig.add_axes([left, bottom, width, height])
cbar = plt.colorbar(im, cax=cax, ticks=clevs, orientation='vertical')
#cbar.ax.xaxis.set_ticks_position('top')
cbar.ax.tick_params(labelsize=8)
cbar.set_label('Freezing Rain (dBZ)', size=8) # MODIFY THIS for other fields!!
########## SEVERE DASHBOARD ##########
#### MISC ####
def mkdir_p(mypath):
'''Creates a directory. equivalent to using mkdir -p on the command line'''
from errno import EEXIST
from os import makedirs,path
try:
makedirs(mypath)
except OSError as exc: # Python >2.5
if exc.errno == EEXIST and path.isdir(mypath):
pass
else: raise
def mask_below_terrain(spres,data,levs):
'''
Given a surface pressure, return data only below that pressure (above ground).
Needs spres, a surface pressure (float)
Needs data, a pint quantity array of temps/dew point/rh/whatever
Needs levs, a pint quantity array of pressures
'''
above_ground = []
for i in range(len(levs)):
diff = levs[i]-spres
if diff <0:
above_ground.append(levs[i])
pres_abv_ground = above_ground*units.hPa
num_points_abv_ground = len(above_ground)
data_abv_ground = data[-num_points_abv_ground:]
return [data_abv_ground,pres_abv_ground]
def get_windslice(model,domainsize):
'''
Given a model and domainsize, return the right wind slice to make the barbs
look good.
Inputs: model, domainsize (strings). Currently supported models are 'GFS',
'NAM', and 'RAP'. Currently supported domainsizes are 'regional' and 'local'
Output: slice object wind_slice
'''
if model == 'GFS':
if domainsize == 'regional':
wind_slice = slice(2,-2,2)
elif domainsize == 'local':
wind_slice = slice(1,-1,1)
else:
print("Invalid domainsize String. Needs to be 'regional' or 'local'")
elif model == 'NAM':
if domainsize == 'regional':
wind_slice = slice(6,-6,6)
elif domainsize == 'local':
wind_slice = slice(3,-3,3)
else:
print("Invalid domainsize String. Needs to be 'regional' or 'local'")
elif model == 'RAP':
if domainsize == 'regional':
wind_slice = slice(12,-12,12)
elif domainsize == 'local':
wind_slice = slice(8,-8,8)
else:
print("Invalid domainsize String. Needs to be 'regional' or 'local'")
else:
print("Invalid model String. Needs to be 'GFS','NAM',or 'RAP'")
return wind_slice