forked from xiongxslab/Translatomer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_all_11fold.py
517 lines (457 loc) · 21.9 KB
/
train_all_11fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import sys
import torch
import argparse
import numpy as np
import os
import json
import pandas as pd
import pyfaidx
import kipoiseq
from kipoiseq import Interval
import pyBigWig
from transformers import get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup
from torchmetrics import Metric
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data import ConcatDataset
from torch.utils.data.dataloader import default_collate
import pytorch_lightning as pl
from pytorch_lightning import LightningModule, Trainer, LightningDataModule
import pytorch_lightning.callbacks as callbacks
from typing import Optional
import model.models as models
from tensor_loader import TensorLoader
import time
import random
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
SEQ_LEN = 65536
TARGET_LEN = 1024
class FastaStringExtractor:
def __init__(self, fasta_file):
self.fasta = fasta_file #pyfaidx.Fasta(fasta_file)
self._chromosome_sizes = {k: len(v) for k, v in pyfaidx.Fasta(self.fasta).items()}
self.seq_len = SEQ_LEN
def extract(self, interval: Interval, **kwargs) -> str:
# Truncate interval if it extends beyond the chromosome lengths.
chromosome_length = self._chromosome_sizes[interval.chrom]
trimmed_interval = Interval(interval.chrom,
max(interval.start, 0),
min(interval.end, chromosome_length),
)
# pyfaidx wants a 1-based interval
sequence = str(pyfaidx.Fasta(self.fasta).get_seq(trimmed_interval.chrom,
trimmed_interval.start + 1,
trimmed_interval.end).seq).upper()
# Fill truncated values with N's.
pad_upstream = 'N' * max(-interval.start, 0)
pad_downstream = 'N' * max(interval.end - chromosome_length, 0)
return pad_upstream + sequence + pad_downstream
def close(self):
return pyfaidx.Fasta(self.fasta).close() #self.fasta.close()
# Correlation computation along positions from https://github.com/lucidrains/enformer-pytorch/blob/main/enformer_pytorch/metrics.py
class MeanPearsonCorrCoefPerChannel(Metric):
is_differentiable: Optional[bool] = False
full_state_update:bool = False
higher_is_better: Optional[bool] = True
def __init__(self, n_channels:int, dist_sync_on_step=False):
"""Calculates the mean pearson correlation across channels aggregated over regions"""
super().__init__(dist_sync_on_step=dist_sync_on_step, full_state_update=False)
self.reduce_dims=(0, 1)
self.add_state("product", default=torch.zeros(n_channels, dtype=torch.float32), dist_reduce_fx="sum", )
self.add_state("true", default=torch.zeros(n_channels, dtype=torch.float32), dist_reduce_fx="sum", )
self.add_state("true_squared", default=torch.zeros(n_channels, dtype=torch.float32), dist_reduce_fx="sum", )
self.add_state("pred", default=torch.zeros(n_channels, dtype=torch.float32), dist_reduce_fx="sum", )
self.add_state("pred_squared", default=torch.zeros(n_channels, dtype=torch.float32), dist_reduce_fx="sum", )
self.add_state("count", default=torch.zeros(n_channels, dtype=torch.float32), dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor):
assert preds.shape == target.shape
self.product += torch.sum(preds * target, dim=self.reduce_dims)
self.true += torch.sum(target, dim=self.reduce_dims)
self.true_squared += torch.sum(torch.square(target), dim=self.reduce_dims)
self.pred += torch.sum(preds, dim=self.reduce_dims)
self.pred_squared += torch.sum(torch.square(preds), dim=self.reduce_dims)
self.count += torch.sum(torch.ones_like(target), dim=self.reduce_dims)
def compute(self):
true_mean = self.true / self.count
pred_mean = self.pred / self.count
covariance = (self.product
- true_mean * self.pred
- pred_mean * self.true
+ self.count * true_mean * pred_mean)
true_var = self.true_squared - self.count * torch.square(true_mean)
pred_var = self.pred_squared - self.count * torch.square(pred_mean)
tp_var = torch.sqrt(true_var) * torch.sqrt(pred_var)
correlation = covariance / tp_var
return correlation
class Dataset(torch.utils.data.Dataset):
def __init__(self, regions, input_features, output_features, fasta_reader, seq_len=65536, target_length=1024, use_aug = True):
self.target_length = target_length
self.seq_len = seq_len
self.fasta_reader = fasta_reader #FastaStringExtractor(fasta_path)
self.regions = regions
self.input_features = input_features
self.output_features = output_features
self.use_aug = use_aug
@staticmethod
def one_hot_encode(sequence):
en_dict = {'A' : 0, 'T' : 1, 'C' : 2, 'G' : 3, 'N' : 4}
en_seq = [en_dict[ch] for ch in sequence]
np_seq = np.array(en_seq, dtype = int)
seq_emb = np.zeros((len(np_seq), 5))
seq_emb[np.arange(len(np_seq)), np_seq] = 1
return seq_emb.astype(np.float32)
def __len__(self):
return len(self.regions)
def reverse(self, seq, input_features, output_features, strand):
'''
Reverse sequence and matrix
'''
if strand == '-':
seq_r = np.flip(seq, 0).copy() # n x 5 shape
input_features_r = torch.flip(input_features, dims=[0])
output_features_r = torch.flip(output_features, dims=[0]) # n
# Complementary sequence
seq_r = self.complement(seq_r)
else:
seq_r = seq
input_features_r = input_features
output_features_r = output_features
return seq_r, input_features_r, output_features_r
def complement(self, seq):
'''
Complimentary sequence
'''
seq_comp = np.concatenate([seq[:, 1:2],
seq[:, 0:1],
seq[:, 3:4],
seq[:, 2:3],
seq[:, 4:5]], axis = 1)
return seq_comp
def __getitem__(self, idx):
loc_row = self.regions.iloc[idx]
target_interval = Interval(loc_row['chr'], loc_row['start'], loc_row['end']).resize(self.seq_len)
sequence = self.fasta_reader.extract(target_interval)
sequence_one_hot = self.one_hot_encode(sequence)
input_features = self.input_features[idx]
output_features = self.output_features[idx]
chrom = self.regions.iloc[idx]['chr']
start = loc_row['start']
end = loc_row['end']
strand = loc_row['strand']
if self.use_aug:
sequence_one_hot, input_features, output_features = self.reverse(sequence_one_hot, input_features, output_features, strand)
return {
'sequence': sequence_one_hot,
'input_features': input_features,
'output_features': output_features,
'chrom': chrom,
'start': start,
'end': end
}
class DataModule(LightningDataModule):
def __init__(
self,
region_file: str=None,
input_file: list=[],
output_file: list=[],
fasta_path: str=None,
data_roots: list=[],
seq_len: int=65536,
target_length: int=1024,
train_chrlist: list=[],
val_chrlist: list=[],
test_chrlist: list=[],
batch_size: int=32,
eval_batch_size: int=None,
num_workers: int=4,
pin_memory: bool=False,
**kwargs
):
super().__init__()
self.eval_batch_size = eval_batch_size if eval_batch_size is not None else batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.regions = pd.read_csv(region_file, sep='\t', names = ['chr', 'start', 'end', 'strand'])
self.input_features = input_file
self.output_features = output_file
self.data_roots = data_roots
self.fasta_reader = FastaStringExtractor(fasta_path)
train_idx = [ i for i, c in enumerate(self.regions['chr']) if c in train_chrlist ]
val_idx = [ i for i, c in enumerate(self.regions['chr']) if c in val_chrlist ]
test_idx = [ i for i, c in enumerate(self.regions['chr']) if c in test_chrlist ]
train_dataset_list = []
val_dataset_list = []
test_dataset_list = []
for i, data_root in enumerate(data_roots):
train_dataset = Dataset(self.regions.iloc[train_idx], self.input_features[i][train_idx], self.output_features[i][train_idx], self.fasta_reader, seq_len, target_length)
val_dataset = Dataset(self.regions.iloc[val_idx], self.input_features[i][val_idx], self.output_features[i][val_idx], self.fasta_reader, seq_len, target_length)
test_dataset = Dataset(self.regions.iloc[test_idx], self.input_features[i][test_idx], self.output_features[i][test_idx], self.fasta_reader, seq_len, target_length)
train_dataset_list.append(train_dataset)
val_dataset_list.append(val_dataset)
test_dataset_list.append(test_dataset)
self.train_dataset = ConcatDataset(train_dataset_list)
self.val_dataset = ConcatDataset(val_dataset_list)
self.test_dataset = ConcatDataset(test_dataset_list)
def train_dataloader(self):
loader = DataLoader(
self.train_dataset,
batch_size=self.eval_batch_size,
shuffle=True,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
prefetch_factor=1
)
return loader
def val_dataloader(self):
loader = DataLoader(
self.val_dataset,
batch_size=self.eval_batch_size,
shuffle=True,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
prefetch_factor=1
)
return loader
def test_dataloader(self):
loader = DataLoader(
self.test_dataset,
batch_size=self.eval_batch_size,
shuffle=False,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
prefetch_factor=1
)
return loader
class TrainModule(LightningModule):
def __init__(self, args):
super().__init__()
self.save_hyperparameters()
self.model = self.get_model(args)
self.args = args
self.criterion = nn.MSELoss()
self.pcc = MeanPearsonCorrCoefPerChannel(1)
def forward(self, x):
pred = self.model(x)
return pred
def proc_batch(self, batch):
seq = batch['sequence']
epi = batch['input_features'].unsqueeze(2)
targets = batch['output_features']
inputs = torch.cat([seq, epi], dim = 2)
targets = targets.float()
return inputs, targets
def training_step(self, batch, batch_idx):
inputs, targets = self.proc_batch(batch)
pred = self(inputs)
loss = self.criterion(pred, targets).mean()
pcc = self.pcc(pred, targets).mean()
ranks1 = pred.argsort().argsort().type(torch.float32)
ranks2 = targets.argsort().argsort().type(torch.float32)
scc = self.pcc(ranks1, ranks2).mean()
metrics = {
'loss/train_step' : loss,
'pearson/train_step': pcc,
'spearman/train_step': scc
}
self.log_dict(metrics, batch_size = inputs.shape[0], prog_bar=True, sync_dist=True)
return {'loss':loss,'pcc':pcc,'scc':scc }
def validation_step(self, batch, batch_idx):
inputs, targets = self.proc_batch(batch)
pred = self(inputs)
loss = self.criterion(pred, targets).mean()
pcc = self.pcc(pred, targets).mean()
ranks1 = pred.argsort().argsort().type(torch.float32)
ranks2 = targets.argsort().argsort().type(torch.float32)
scc = self.pcc(ranks1, ranks2).mean()
return {'loss':loss,'pcc':pcc,'scc':scc }
def test_step(self, batch, batch_idx):
inputs, targets = self.proc_batch(batch)
pred = self(inputs)
loss = self.criterion(pred, targets).mean()
pcc = self.pcc(pred, targets).mean()
ranks1 = pred.argsort().argsort().type(torch.float32)
ranks2 = targets.argsort().argsort().type(torch.float32)
scc = self.pcc(ranks1, ranks2).mean()
return {'loss':loss,'pcc':pcc,'scc':scc }
# Collect epoch statistics
def training_epoch_end(self, step_outputs):
ret_metrics = self._shared_epoch_end(step_outputs)
metrics = {'train_loss': ret_metrics['loss'], 'train_pcc': ret_metrics['pcc'], 'train_scc': ret_metrics['scc']
}
self.log_dict(metrics, prog_bar=True, on_epoch=True,on_step=False, sync_dist=True)
def validation_epoch_end(self, step_outputs):
ret_metrics = self._shared_epoch_end(step_outputs)
metrics = {'val_loss' : ret_metrics['loss'], 'val_pcc': ret_metrics['pcc'], 'val_scc': ret_metrics['scc']
}
self.log_dict(metrics, prog_bar=True, on_epoch=True,on_step=False, sync_dist=True)
def test_epoch_end(self, step_outputs):
ret_metrics = self._shared_epoch_end(step_outputs)
metrics = {'test_loss' : ret_metrics['loss'], 'test_pcc': ret_metrics['pcc'], 'test_scc': ret_metrics['scc']
}
self.log_dict(metrics, prog_bar=True, on_epoch=True,on_step=False, sync_dist=True)
def _shared_epoch_end(self, step_outputs):
pcc = torch.tensor([out['pcc'] for out in step_outputs])
loss = torch.tensor([out['loss']for out in step_outputs])
scc = torch.tensor([out['scc'] for out in step_outputs])
pcc = pcc[~torch.isnan(pcc)]
scc = scc[~torch.isnan(scc)]
avg_pcc = pcc.mean()
avg_loss = loss.mean()
avg_scc = scc.mean()
return {'loss' : avg_loss, 'pcc' : avg_pcc, 'scc':avg_scc}
def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(), lr = 1e-5, weight_decay = 0.05) #final
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps= 2000, #self.hparams.warmup_steps
num_training_steps=self.trainer.estimated_stepping_batches,
)
scheduler_config = {
'scheduler': scheduler,
'interval': 'step',
'frequency': 1,
'monitor': 'val_loss',
'strict': True,
'name': 'get_cosine_schedule_with_warmup',
}
return {'optimizer' : optimizer, 'lr_scheduler' : scheduler_config}
def get_model(self, args):
model_name = args.model_type
num_genomic_features = 1
ModelClass = getattr(models, model_name)
model = ModelClass(num_genomic_features, mid_hidden = 512)
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Translatomer')
parser.add_argument('--seed', dest='run_seed', default=2077,
type=int,
help='Random seed for training')
parser.add_argument('--save_path', dest='run_save_path', default='checkpoints',
help='Path to the model checkpoint')
parser.add_argument('--data-root', dest='dataset_data_root', default='data',
help='Root path of training data', required=True)
parser.add_argument('--assembly', dest='dataset_assembly', default='hg38',
help='Genome assembly for training data')
parser.add_argument('--dataset', dest='dataset', default='data_roots.txt',
help='Muilti input for data training')
parser.add_argument('--model-type', dest='model_type', default='TransModel',
help='Transformer')
parser.add_argument('--fold', dest='n_fold', default='0',
help='Which fold of the model training')
# Training Parameters
parser.add_argument('--patience', dest='trainer_patience', default=8,
type=int,
help='Epoches before early stopping')
parser.add_argument('--max-epochs', dest='trainer_max_epochs', default=128,
type=int,
help='Max epochs')
parser.add_argument('--save-top-n', dest='trainer_save_top_n', default=20,
type=int,
help='Top n models to save')
parser.add_argument('--num-gpu', dest='trainer_num_gpu', default=1,
type=int,
help='Number of GPUs to use')
# Dataloader Parameters
parser.add_argument('--batch-size', dest='dataloader_batch_size', default=8,
type=int,
help='Batch size')
parser.add_argument('--ddp-disabled', dest='dataloader_ddp_disabled',
action='store_false',
help='Using ddp, adjust batch size')
parser.add_argument('--num-workers', dest='dataloader_num_workers', default=1,
type=int,
help='Dataloader workers')
parser.add_argument('--checkpoint', type=str, default=None)
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
seq_len = SEQ_LEN
target_length = TARGET_LEN
region_file = f'data/{args.dataset_assembly}/gene_region_24chr.1.bed'#human-newBed
fasta_path = f'data/{args.dataset_assembly}/{args.dataset_assembly}.fa'
with open(region_file, 'r') as file:
region_count = sum(1 for line in file if line.strip())
tensor_loader = TensorLoader(region_count, seq_len)
input_data = []
output_data = []
names = locals()
celltype_list = []
study_list = []
with open({args.dataset}, 'r') as file: #human
data_roots = [line.strip('\n') for line in file]
for i, data_root in enumerate(data_roots):
celltype, study = data_root.split('\t')
celltype_list.append(celltype)
study_list.append(study)
output_data.append(torch.load(f'data/{args.dataset_assembly}/{celltype}/{study}/output_features/tmp/{celltype}_{seq_len}_{target_length}_log_24chr_riboseq_final.pt')) #human-newBed
input_data.append(tensor_loader.load(f'data/{args.dataset_assembly}/{celltype}/{study}/input_features/tmp/{celltype}_{seq_len}_log_24chr_rnaseq_final.pt')) #human -newBed
pl.seed_everything(args.run_seed, workers=True)
chrlist =['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15','chr16','chr17','chr18','chr19','chr20','chr21','chr22']
random.shuffle(chrlist)
n_fold = int(args.n_fold)
print(f'FOLD {n_fold}')
print('--------------------------------')
val_chrlist = chrlist[2*n_fold:2*n_fold+2]
test_chrlist = chrlist[2*n_fold+2:2*n_fold+4]
while test_chrlist == []:
test_chrlist = chrlist[0:2]
train_chrlist = list(set(chrlist)-set(val_chrlist)-set(test_chrlist))
print("all_chrlist:",chrlist)
print("train_chrlist:",train_chrlist)
print("val_chrlist:",val_chrlist)
print("test_chrlist:",test_chrlist)
dataset = DataModule(
region_file = region_file,
fasta_path = fasta_path,
input_file = input_data,
output_file = output_data,
data_roots = data_roots,
seq_len = seq_len,
target_length = target_length,
train_chrlist = train_chrlist,
val_chrlist = val_chrlist,
test_chrlist = test_chrlist,
batch_size = args.dataloader_batch_size,
num_workers= args.dataloader_num_workers,
)
# loading data
if args.checkpoint:
model = TrainModule()
trainer = Trainer(resume_from_checkpoint=args.checkpoint)
trainer.fit()
else:
# Early_stopping
early_stop_callback = callbacks.EarlyStopping(monitor='val_loss',
min_delta=0.00,
patience=args.trainer_patience,
verbose=False,
mode="min")
# Checkpoints
checkpoint_callback = callbacks.ModelCheckpoint(dirpath=f'{args.run_save_path}/models',
save_top_k=args.trainer_save_top_n,
monitor='val_loss',
mode = 'min')
# LR monitor
lr_monitor = callbacks.LearningRateMonitor(logging_interval='epoch')
csv_logger = pl.loggers.CSVLogger(save_dir = f'{args.run_save_path}/csv')
all_loggers = csv_logger
pl.seed_everything(args.run_seed, workers=True)
pl_module = TrainModule(args)
trainer = Trainer.from_argparse_args(
args,
accelerator = 'gpu',
strategy='ddp',
devices = args.trainer_num_gpu,
callbacks = [early_stop_callback,
checkpoint_callback,
lr_monitor],
max_epochs = args.trainer_max_epochs,
gradient_clip_val=0.8, ##revision_nan
num_sanity_val_steps = 0,
precision=32,#precision=16,
logger = all_loggers
)
trainer.fit(pl_module, dataset.train_dataloader(), dataset.val_dataloader())
trainer.test(pl_module, dataset.test_dataloader())
tensor_loader.close()
#nohup python train_all_11fold.py --save_path results/bigmodel/test_bigmodel_h512_l12_lr1e-5_wd0.05_ws2k_p32_fold0 --data-root data --assembly hg38 --dataset data_roots.txt --model-type TransModel --fold 0 --patience 6 --max-epochs 128 --save-top-n 128 --num-gpu 1 --batch-size 32 --num-workers 1 >DNA_logs/test_bigmodel_h512_l12_lr1e-5_wd0.05_ws2k_p32_fold0.log 2>&1 &