-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathGOCVHelper_2018_10_09.cpp
1529 lines (1434 loc) · 47.1 KB
/
GOCVHelper_2018_10_09.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//////////////////////////////////////////////////////////////////////////////
//名称:GOCVHelper0.9.cpp
//功能:图像处理和MFC增强
//作者:jsxyhelu([email protected] http://jsxyhelu.cnblogs.com)
//组织:GREENOPEN
//日期:2018-10-06
/////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include <io.h>
#include <odbcinst.h>
#include <afxdb.h>
#include "GoCvHelper.h"
#include "opencv/cv.h"
#include "atlstr.h"
RNG rng(12345);
#define DEBUG TRUE
//2016年1月26日GoCvHelper添加string 相关操作函数到其他操作中
//2016年1月28日10:45:22 GOCVHelper基于颜色直方图的CBIR到图像操作中去
//2016年8月12日08:27:03 添加关于excel操作相关函数
//2017年6月28日11:04:35 修改一个轮廓排序的BUG
//2018年6月26日08:50:09 解决unicode问题,并且文件改名字了(最主要的问题是将项目设置为 未设置)
//2018年8月7日20:28:22 添加了更为高效的GetPointLineDistance等
namespace GO{
#pragma region 图像增强
//读取灰度或彩色图片到灰度
Mat imread2gray(string path){
Mat src = imread(path);
Mat srcClone = src.clone();
if (CV_8UC3 == srcClone.type() )
cvtColor(srcClone,srcClone,CV_BGR2GRAY);
return srcClone;
}
//带有上下限的threshold
Mat threshold2(Mat src,int minvalue,int maxvalue){
Mat thresh1;
Mat thresh2;
Mat dst;
threshold(src,thresh1,minvalue,255, THRESH_BINARY);
threshold(src,thresh2,maxvalue,255,THRESH_BINARY_INV);
dst = thresh1 & thresh2;
return dst;
}
//自适应门限的canny算法
//canny2
Mat canny2(Mat src){
Mat imagetmp = src.clone();
double low_thresh = 0.0;
double high_thresh = 0.0;
AdaptiveFindThreshold(imagetmp,&low_thresh,&high_thresh);
Canny(imagetmp,imagetmp,low_thresh,high_thresh);
return imagetmp;}
void AdaptiveFindThreshold( Mat src,double *low,double *high,int aperture_size){
const int cn = src.channels();
Mat dx(src.rows,src.cols,CV_16SC(cn));
Mat dy(src.rows,src.cols,CV_16SC(cn));
Sobel(src,dx,CV_16S,1,0,aperture_size,1,0,BORDER_REPLICATE);
Sobel(src,dy,CV_16S,0,1,aperture_size,1,0,BORDER_REPLICATE);
CvMat _dx = dx;
CvMat _dy = dy;
_AdaptiveFindThreshold(&_dx, &_dy, low, high); }
void _AdaptiveFindThreshold(CvMat *dx, CvMat *dy, double *low, double *high){
CvSize size;
IplImage *imge=0;
int i,j;
CvHistogram *hist;
int hist_size = 255;
float range_0[]={0,256};
float* ranges[] = { range_0 };
double PercentOfPixelsNotEdges = 0.7;
size = cvGetSize(dx);
imge = cvCreateImage(size, IPL_DEPTH_32F, 1);
// 计算边缘的强度, 并存于图像中
float maxv = 0;
for(i = 0; i < size.height; i++ ){
const short* _dx = (short*)(dx->data.ptr + dx->step*i);
const short* _dy = (short*)(dy->data.ptr + dy->step*i);
float* _image = (float *)(imge->imageData + imge->widthStep*i);
for(j = 0; j < size.width; j++){
_image[j] = (float)(abs(_dx[j]) + abs(_dy[j]));
maxv = maxv < _image[j] ? _image[j]: maxv;}}
if(maxv == 0){
*high = 0;
*low = 0;
cvReleaseImage( &imge );
return;}
// 计算直方图
range_0[1] = maxv;
hist_size = (int)(hist_size > maxv ? maxv:hist_size);
hist = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist( &imge, hist, 0, NULL );
int total = (int)(size.height * size.width * PercentOfPixelsNotEdges);
float sum=0;
int icount = hist->mat.dim[0].size;
float *h = (float*)cvPtr1D( hist->bins, 0 );
for(i = 0; i < icount; i++){
sum += h[i];
if( sum > total )
break; }
// 计算高低门限
*high = (i+1) * maxv / hist_size ;
*low = *high * 0.4;
cvReleaseImage( &imge );
cvReleaseHist(&hist); }
// end of canny2
//填充孔洞
//使用例子
Mat fillHoles(Mat src){
Mat dst = getInnerHoles(src);
threshold(dst,dst,0,255,THRESH_BINARY_INV);
dst = src + dst;
return dst;
}
//获得图像中白色的比率
float getWhiteRate(Mat src){
int iWhiteSum = 0;
for (int x =0;x<src.rows;x++){
for (int y=0;y<src.cols;y++){
if (src.at<uchar>(x,y) != 0)
iWhiteSum = iWhiteSum +1;
}
}
return (float)iWhiteSum/(float)(src.rows*src.cols);
}
//获得内部孔洞图像
Mat getInnerHoles(Mat src){
Mat clone = src.clone();
srand((unsigned)time(NULL)); // 生成时间种子
float fPreRate = getWhiteRate(clone);
float fAftRate = 0;
do {
clone = src.clone();
// x y 对于 cols rows
floodFill(clone,Point((int)rand()%src.cols,(int)rand()%src.rows),Scalar(255));
fAftRate = getWhiteRate(clone);
} while ( fAftRate < 0.6);
return clone;
}
// end of fillHoles
//顶帽去光差,radius为模板半径
Mat moveLightDiff(Mat src,int radius){
Mat dst;
Mat srcclone = src.clone();
Mat mask = Mat::zeros(radius*2,radius*2,CV_8U);
circle(mask,Point(radius,radius),radius,Scalar(255),-1);
//顶帽
erode(srcclone,srcclone,mask);
dilate(srcclone,srcclone,mask);
dst = src - srcclone;
return dst;
}
//将 DEPTH_8U型二值图像进行细化 经典的Zhang并行快速细化算法
//细化算法
void thin(const Mat &src, Mat &dst, const int iterations){
const int height =src.rows -1;
const int width =src.cols -1;
//拷贝一个数组给另一个数组
if(src.data != dst.data)
src.copyTo(dst);
int n = 0,i = 0,j = 0;
Mat tmpImg;
uchar *pU, *pC, *pD;
bool isFinished =FALSE;
for(n=0; n<iterations; n++){
dst.copyTo(tmpImg);
isFinished =FALSE; //一次 先行后列扫描 开始
//扫描过程一 开始
for(i=1; i<height; i++) {
pU = tmpImg.ptr<uchar>(i-1);
pC = tmpImg.ptr<uchar>(i);
pD = tmpImg.ptr<uchar>(i+1);
for(int j=1; j<width; j++){
if(pC[j] > 0){
int ap=0;
int p2 = (pU[j] >0);
int p3 = (pU[j+1] >0);
if (p2==0 && p3==1)
ap++;
int p4 = (pC[j+1] >0);
if(p3==0 && p4==1)
ap++;
int p5 = (pD[j+1] >0);
if(p4==0 && p5==1)
ap++;
int p6 = (pD[j] >0);
if(p5==0 && p6==1)
ap++;
int p7 = (pD[j-1] >0);
if(p6==0 && p7==1)
ap++;
int p8 = (pC[j-1] >0);
if(p7==0 && p8==1)
ap++;
int p9 = (pU[j-1] >0);
if(p8==0 && p9==1)
ap++;
if(p9==0 && p2==1)
ap++;
if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7){
if(ap==1){
if((p2*p4*p6==0)&&(p4*p6*p8==0)){
dst.ptr<uchar>(i)[j]=0;
isFinished =TRUE;
}
}
}
}
} //扫描过程一 结束
dst.copyTo(tmpImg);
//扫描过程二 开始
for(i=1; i<height; i++){
pU = tmpImg.ptr<uchar>(i-1);
pC = tmpImg.ptr<uchar>(i);
pD = tmpImg.ptr<uchar>(i+1);
for(int j=1; j<width; j++){
if(pC[j] > 0){
int ap=0;
int p2 = (pU[j] >0);
int p3 = (pU[j+1] >0);
if (p2==0 && p3==1)
ap++;
int p4 = (pC[j+1] >0);
if(p3==0 && p4==1)
ap++;
int p5 = (pD[j+1] >0);
if(p4==0 && p5==1)
ap++;
int p6 = (pD[j] >0);
if(p5==0 && p6==1)
ap++;
int p7 = (pD[j-1] >0);
if(p6==0 && p7==1)
ap++;
int p8 = (pC[j-1] >0);
if(p7==0 && p8==1)
ap++;
int p9 = (pU[j-1] >0);
if(p8==0 && p9==1)
ap++;
if(p9==0 && p2==1)
ap++;
if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7){
if(ap==1){
if((p2*p4*p8==0)&&(p2*p6*p8==0)){
dst.ptr<uchar>(i)[j]=0;
isFinished =TRUE;
}
}
}
}
}
} //一次 先行后列扫描完成
//如果在扫描过程中没有删除点,则提前退出
if(isFinished ==FALSE)
break;
}
}
}
// end of thin
//使得rect区域半透明
Mat translucence(Mat src,Rect rect,int idepth){
Mat dst = src.clone();
Mat roi = dst(rect);
roi += Scalar(idepth,idepth,idepth);
return dst;
}
//使得rect区域打上马赛克
Mat mosaic(Mat src,Rect rect,int W,int H){
Mat dst = src.clone();
Mat roi = dst(rect);
for (int i=W; i<roi.cols; i+=W) {
for (int j=H; j<roi.rows; j+=H) {
uchar s=roi.at<uchar>(j-H/2,(i-W/2)*3);
uchar s1=roi.at<uchar>(j-H/2,(i-W/2)*3+1);
uchar s2=roi.at<uchar>(j-H/2,(i-W/2)*3+2);
for (int ii=i-W; ii<=i; ii++) {
for (int jj=j-H; jj<=j; jj++) {
roi.at<uchar>(jj,ii*3+0)=s;
roi.at<uchar>(jj,ii*3+1)=s1;
roi.at<uchar>(jj,ii*3+2)=s2;
}
}
}
}
return dst;
}
//基于颜色直方图的距离计算
double GetHsVDistance(Mat src_base,Mat src_test1){
Mat hsv_base;
Mat hsv_test1;
/// Convert to HSV
cvtColor( src_base, hsv_base, COLOR_BGR2HSV );
cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV );
/// Using 50 bins for hue and 60 for saturation
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
// hue varies from 0 to 179, saturation from 0 to 255
float h_ranges[] = { 0, 180 };
float s_ranges[] = { 0, 256 };
const float* ranges[] = { h_ranges, s_ranges };
// Use the o-th and 1-st channels
int channels[] = { 0, 1 };
/// Histograms
MatND hist_base;
MatND hist_test1;
/// Calculate the histograms for the HSV images
calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false );
normalize( hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat() );
/// Apply the histogram comparison methods
double base_test1 = compareHist( hist_base, hist_test1, 0 );
return base_test1;
}
// Multiply 正片叠底
void Multiply(Mat& src1, Mat& src2, Mat& dst)
{
for(int index_row=0; index_row<src1.rows; index_row++)
{
for(int index_col=0; index_col<src1.cols; index_col++)
{
for(int index_c=0; index_c<3; index_c++)
dst.at<Vec3f>(index_row, index_col)[index_c]=
src1.at<Vec3f>(index_row, index_col)[index_c]*
src2.at<Vec3f>(index_row, index_col)[index_c];
}
}
}
// Color_Burn 颜色加深
void Color_Burn(Mat& src1, Mat& src2, Mat& dst)
{
for(int index_row=0; index_row<src1.rows; index_row++)
{
for(int index_col=0; index_col<src1.cols; index_col++)
{
for(int index_c=0; index_c<3; index_c++)
dst.at<Vec3f>(index_row, index_col)[index_c]=1-
(1-src1.at<Vec3f>(index_row, index_col)[index_c])/
src2.at<Vec3f>(index_row, index_col)[index_c];
}
}
}
// 线性增强
void Linear_Burn(Mat& src1, Mat& src2, Mat& dst)
{
for(int index_row=0; index_row<src1.rows; index_row++)
{
for(int index_col=0; index_col<src1.cols; index_col++)
{
for(int index_c=0; index_c<3; index_c++)
dst.at<Vec3f>(index_row, index_col)[index_c]=max(
src1.at<Vec3f>(index_row, index_col)[index_c]+
src2.at<Vec3f>(index_row, index_col)[index_c]-1, (float)0.0);
}
}
}
//点乘法 elementWiseMultiplication
Mat EWM(Mat m1,Mat m2){
Mat dst=m1.mul(m2);
return dst;
}
//图像局部对比度增强算法
Mat ACE(Mat src,int C,int n,int MaxCG){
Mat meanMask;
Mat varMask;
Mat meanGlobal;
Mat varGlobal;
Mat dst;
Mat tmp;
Mat tmp2;
blur(src.clone(),meanMask,Size(50,50));//meanMask为局部均值
tmp = src - meanMask;
varMask = EWM(tmp,tmp);
blur(varMask,varMask,Size(50,50)); //varMask为局部方差
//换算成局部标准差
varMask.convertTo(varMask,CV_32F);
for (int i=0;i<varMask.rows;i++){
for (int j=0;j<varMask.cols;j++){
varMask.at<float>(i,j) = (float)sqrt(varMask.at<float>(i,j));
}
}
meanStdDev(src,meanGlobal,varGlobal); //meanGlobal为全局均值 varGlobal为全局标准差
tmp2 = varGlobal/varMask;
for (int i=0;i<tmp2.rows;i++){
for (int j=0;j<tmp2.cols;j++){
if (tmp2.at<float>(i,j)>MaxCG){
tmp2.at<float>(i,j) = MaxCG;
}
}
}
tmp2.convertTo(tmp2,CV_8U);
tmp2 = EWM(tmp2,tmp);
dst = meanMask + tmp2;
imshow("D方法",dst);
dst = meanMask + C*tmp;
imshow("C方法",dst);
return dst;
}
//Local Normalization input is 32f1u
Mat LocalNormalization(Mat float_gray,float sigma1,float sigma2){
Mat gray, blur, num, den;
float_gray.convertTo(float_gray, CV_32F, 1.0/255.0);
// numerator = img - gauss_blur(img)
boxFilter(float_gray,blur,float_gray.depth(),Size(sigma1,sigma1));
num = float_gray - blur;
boxFilter(num.mul(num),blur,num.depth(),Size(sigma2,sigma2));
// denominator = sqrt(gauss_blur(img^2))
pow(blur, 0.5, den);
// output = numerator / denominator
gray = num / den;
// normalize output into [0,1]
normalize(gray, gray, 0.0, 1.0, NORM_MINMAX, -1);
return gray;
}
#pragma endregion 图像增强
#pragma region 图像处理
//寻找最大的轮廓
VP FindBigestContour(Mat src){
int imax = 0; //代表最大轮廓的序号
int imaxcontour = -1; //代表最大轮廓的大小
std::vector<std::vector<Point>>contours;
findContours(src,contours,CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);
for (int i=0;i<contours.size();i++){
int itmp = contourArea(contours[i]);//这里采用的是轮廓大小
if (imaxcontour < itmp ){
imax = i;
imaxcontour = itmp;
}
}
return contours[imax];
}
//寻找第nth的轮廓
//ith = 0代表最大,ith=1 代表第2个,以此类推
bool sortfunction (std::vector<Point> c1,std::vector<Point> c2) { return (contourArea(c1)>contourArea(c2)); }
VP FindnthContour(Mat src,int ith ){
std::vector<std::vector<Point>>contours;
findContours(src,contours,CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);
std::sort(contours.begin(),contours.end(),sortfunction);
return contours[ith];
}
//寻找并绘制出彩色联通区域
vector<VP> connection2(Mat src,Mat& draw){
draw = Mat::zeros(src.rows,src.cols,CV_8UC3);
vector<VP>contours;
findContours(src.clone(),contours,CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);
//由于给大的区域着色会覆盖小的区域,所以首先进行排序操作
//冒泡排序,由小到大排序
VP vptmp;
for(int i=1;i<contours.size();i++){
for(int j=contours.size()-1;j>=i;j--){
if (contourArea(contours[j]) < contourArea(contours[j-1]))
{
vptmp = contours[j-1];
contours[j-1] = contours[j];
contours[j] = vptmp;
}
}
}
//打印结果
for (int i=contours.size()-1;i>=0;i--){
Scalar color = Scalar(rng.uniform(0,255),rng.uniform(0,255),rng.uniform(0,255));
drawContours(draw,contours,i,color,-1);
}
return contours;
}
vector<VP> connection2(Mat src){
Mat draw;
return connection2(src,draw);
}
//根据轮廓的面积大小进行选择
vector<VP> selectShapeArea(Mat src,Mat& draw,vector<VP> contours,int minvalue,int maxvalue){
vector<VP> result_contours;
draw = Mat::zeros(src.rows,src.cols,CV_8UC3);
for (int i=0;i<contours.size();i++){
double countour_area = contourArea(contours[i]);
if (countour_area >minvalue && countour_area<maxvalue)
result_contours.push_back(contours[i]);
}
for (int i=0;i<result_contours.size();i++){
int iRandB = rng.uniform(0,255);
int iRandG = rng.uniform(0,255);
int iRandR = rng.uniform(0,255);
Scalar color = Scalar(iRandB,iRandG,iRandR);
drawContours(draw,result_contours,i,color,-1);
char cbuf[100];sprintf_s(cbuf,"%d",i+1);
//寻找最小覆盖圆,求出圆心。使用反色打印轮廓项目
float radius;
Point2f center;
minEnclosingCircle(result_contours[i],center,radius);
putText(draw,cbuf,center, FONT_HERSHEY_PLAIN ,5,Scalar(255-iRandB,255-iRandG,255-iRandR),5);
}
return result_contours;
}
vector<VP> selectShapeArea(vector<VP> contours,int minvalue,int maxvalue)
{
vector<VP> result_contours;
for (int i=0;i<contours.size();i++){
double countour_area = contourArea(contours[i]);
if (countour_area >minvalue && countour_area<maxvalue)
result_contours.push_back(contours[i]);
}
return result_contours;
}
vector<VP> selectShapeCircularity(Mat src,Mat& draw,vector<VP> contours,float minvalue,float maxvalue){
vector<VP> result_contours;
draw = Mat::zeros(src.rows,src.cols,CV_8UC3);
for (int i=0;i<contours.size();i++){
float fcompare = calculateCircularity(contours[i]);
if (fcompare >=minvalue && fcompare <=maxvalue)
result_contours.push_back(contours[i]);
}
for (int i=0;i<result_contours.size();i++){
Scalar color = Scalar(rng.uniform(0,255),rng.uniform(0,255),rng.uniform(0,255));
drawContours(draw,result_contours,i,color,-1);
}
return result_contours;
}
vector<VP> selectShapeCircularity(vector<VP> contours,float minvalue,float maxvalue){
vector<VP> result_contours;
for (int i=0;i<contours.size();i++){
float fcompare = calculateCircularity(contours[i]);
if (fcompare >=minvalue && fcompare <=maxvalue)
result_contours.push_back(contours[i]);
}
return result_contours;
}
//计算轮廓的圆的特性
float calculateCircularity(VP contour){
Point2f center;
float radius = 0;
minEnclosingCircle((Mat)contour,center,radius);
//以最小外接圆半径作为数学期望,计算轮廓上各点到圆心距离的标准差
float fsum = 0;
float fcompare = 0;
for (int i=0;i<contour.size();i++){
Point2f ptmp = contour[i];
float fdistenct = sqrt((float)((ptmp.x - center.x)*(ptmp.x - center.x)+(ptmp.y - center.y)*(ptmp.y-center.y)));
float fdiff = abs(fdistenct - radius);
fsum = fsum + fdiff;
}
fcompare = fsum/(float)contour.size();
return fcompare;
}
//返回两点之间的距离
float getDistance(Point2f f1,Point2f f2)
{
return sqrt((float)(f1.x - f2.x)*(f1.x - f2.x) + (f1.y -f2.y)*(f1.y- f2.y));
}
//返回点到直线(线段)的距离
float GetPointLineDistance(Point2f pointInput,Point2f pa,Point2f pb,Point2f& pointOut)
{
Point2f p1;
Point2f p2;
if (pa.x<pb.x)
{
p1 = pa;
p2 = pb;
}
else
{
p1 = pb;
p2 = pa;
}
//分支考虑
if (p1.x == p2.x)
{
pointOut.x = p1.x ;
pointOut.y = pointInput.y;
return abs(pointInput.x - p1.x);
}
if (p1.y == p2.y)
{
pointOut.y = p1.y ;
pointOut.x = pointInput.x;
return abs(pointInput.y - p1.y);
}
float fthea = (p2.y - p1.y)/(p2.x-p1.x);
int fMinDistance = 100000;
int fMinNum = -1;
for (int i=0;i<(int)(p2.x-p1.x);i++)
{
float fx = p1.x +i;
float fy = i*fthea + p1.y;
float ftmp = GO::getDistance(Point2f(fx,fy),pointInput);
if (ftmp<fMinDistance)
{
fMinDistance = ftmp;
fMinNum = i;
}
}
//测试画图
pointOut.x = p1.x +fMinNum;
pointOut.y = fMinNum*fthea + p1.y;
return fMinDistance;
}
//返回点到直线(线段)的距离,换成了更精简的代码,也许也更高效
float GetPointLineDistance(Mat src,Point2f pointInput,Point2f pa,Point2f pb,Point2f& pointOut)
{
LineIterator it(src,pa,pb);
int fMinDistance = 100000;
int fMinNum = -1;
for(int i = 0; i < it.count; i++, ++it)
{
float ftmp = GO::getDistance(it.pos(),pointInput);
if (ftmp<fMinDistance)
{
fMinDistance = ftmp;
pointOut=it.pos;
}
}
return fMinDistance;
}
//获得构建的主要方向,在图上进行标徽,并且返回角度结果
//注意,这个函数,在opencv里面已经并入标准库了
double getOrientation(vector<Point> &pts, Mat &img)
{
//构建pca数据。这里做的是将轮廓点的x和y作为两个维压到data_pts中去。
Mat data_pts = Mat(pts.size(), 2, CV_64FC1);//使用mat来保存数据,也是为了后面pca处理需要
for (int i = 0; i < data_pts.rows; ++i)
{
data_pts.at<double>(i, 0) = pts[i].x;
data_pts.at<double>(i, 1) = pts[i].y;
}
//执行PCA分析
PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
//获得最主要分量,在本例中,对应的就是轮廓中点,也是图像中点
Point pos = Point(pca_analysis.mean.at<double>(0, 0),pca_analysis.mean.at<double>(0, 1));
//存储特征向量和特征值
vector<Point2d> eigen_vecs(2);
vector<double> eigen_val(2);
for (int i = 0; i < 2; ++i)
{
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(i,0);//注意,这个地方原代码写错了
}
//在轮廓/图像中点绘制小圆
circle(img, pos, 3, CV_RGB(255, 0, 255), 2);
//计算出直线,在主要方向上绘制直线
line(img, pos, pos + 0.02 * Point(eigen_vecs[0].x * eigen_val[0], eigen_vecs[0].y * eigen_val[0]) , CV_RGB(255, 255, 0),3);
line(img, pos, pos + 0.02 * Point(eigen_vecs[1].x * eigen_val[1], eigen_vecs[1].y * eigen_val[1]) , CV_RGB(0, 255, 255),3);
//返回角度结果
return atan2(eigen_vecs[0].y, eigen_vecs[0].x);
}
//根据中线将轮廓分为2个部分
//pts 轮廓
//pa pb 中线线段端点
//p1 p2 分为两边后最远2点
//lenght1,length2 对应距离
//img 用于绘图
//返回 是否分割成功
bool SplitContoursByMiddleLine(vector<Point> &pts,Mat &img,Point pa,Point pb,Point& p1,float& length1,Point& p2,float& length2)
{
//寻找轮廓到中线(实际上是线段)的交点
int isum = 0;
Point2f pointOut;
//bool bIsCross =false;
int iStart = -1;
int iEnd = -1;
vector<int> vecBorderPoints;
float fDistance = 0;
//将轮廓划分为两个部分
for (int i = 0;i< pts.size();i++)
{
float f = GetPointLineDistance(img,pts[i], pa,pb,pointOut);//获得轮廓上所有点最远距离点
}
//对所有 轮廓和边缘的交点 进行排序,得到距离最远的点对
float fDistance = 0;
for (int i = 0 ;i<vecBorderPoints.size();i++)
{
for (int j = i;j<vecBorderPoints.size();j++) //已经进行排序优化了
{
if (getDistance(pts[vecBorderPoints[i]],pts[vecBorderPoints[j]]) > fDistance)
{
fDistance = getDistance(pts[vecBorderPoints[i]],pts[vecBorderPoints[j]]);
iStart = vecBorderPoints[i];
iEnd = vecBorderPoints[j];
}
}
}
if (-1 == iEnd ) //出现问题了,交给比较方便的方法吧
return false;
if (iStart > iEnd)
swap(iStart,iEnd);
if ((iEnd - iStart)<pts.size()/4)
return false;//错误控制机制
if (DEBUG)
{
printf("\n\n");
circle(img,pts[iStart],5,Scalar(0,255,0),5);
circle(img,pts[iEnd],5,Scalar(0,255,0),5);
}
vector<Point> vector1;
vector<Point> vector2;
for (int i = 0;i<pts.size();i++)
{
if (i>=iStart && i<=iEnd)
{
vector1.push_back(pts[i]);
if(DEBUG)
circle(img,pts[i],3,Scalar(0,0,255));
}
else
{
vector2.push_back(pts[i]);
if(DEBUG)
circle(img,pts[i],3,Scalar(0,255,255));
}
}
//分别在这两个轮廓里面找到交点距离
Point pstart = pts[iStart];
Point pend = pts[iEnd];
float fmax = -1;int imax = -1;
for (int i =0;i<vector1.size();i++)
{
float f = GetPointLineDistance(vector1[i], pa,pb,pointOut);
if (f>fmax) //冒泡
{
fmax = f;
imax = i;
}
}
if (DEBUG)
circle(img,vector1[imax],3,cv::Scalar(255,0,0),2);
p1 = vector1[imax];
length1 = fmax;
fmax = -1; imax = -1;
for (int i =0;i<vector2.size();i++)
{
float f = GetPointLineDistance(vector2[i], pa,pb,pointOut);
if (f>fmax) //冒泡
{
fmax = f;
imax = i;
}
}
if (DEBUG)
circle(img,vector2[imax],3,cv::Scalar(255,0,0),2);
p2 = vector2[imax];
length2 = fmax;
return true;
}
//获得真实的长宽,返回值为false的话代表识别不成功
bool getRealWidthHeight(vector<Point> &pts,vector<Point> &resultPts, Mat &img,float& flong,float& fshort)
{
//构建pca数据。这里做的是将轮廓点的x和y作为两个维压到data_pts中去。
Mat data_pts = Mat(pts.size(), 2, CV_64FC1);//使用mat来保存数据,也是为了后面pca处理需要
for (int i = 0; i < data_pts.rows; ++i)
{
data_pts.at<double>(i, 0) = pts[i].x;
data_pts.at<double>(i, 1) = pts[i].y;
}
//执行PCA分析
PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
//获得最主要分量,在本例中,对应的就是轮廓中点,也是图像中点
Point pos = Point(pca_analysis.mean.at<double>(0, 0),pca_analysis.mean.at<double>(0, 1));
//获得特征向量和特征值
vector<Point2d> eigen_vecs(2);
vector<double> eigen_val(2);
for (int i = 0; i < 2; ++i)
{
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(i,0);
}
if (eigen_vecs[0].x == 0 || abs(eigen_vecs[0].y / eigen_vecs[0].x) >100)//一般出现在中线为垂直情况,这个时候可以直接采用简单方法
return false;
if (eigen_vecs[1].x == 0 || abs(eigen_vecs[1].y / eigen_vecs[1].x) >100)
return false;
//在轮廓/图像中点绘制小圆
if (DEBUG)
circle(img, pos, 3, CV_RGB(255, 0, 255), 2);
//获得长短轴和轮廓的交接点,首先得到一条绝对可行的直线
//长轴
Point pa = pos-0.04 * Point(eigen_vecs[0].x * eigen_val[0], eigen_vecs[0].y * eigen_val[0]);
Point pb = pos + 0.04 * Point(eigen_vecs[0].x * eigen_val[0], eigen_vecs[0].y * eigen_val[0]) ;
//短轴
Point pc = pos- 0.2 * Point(eigen_vecs[1].x * eigen_val[1], eigen_vecs[1].y * eigen_val[1]);
Point pd = pos + 0.2 * Point(eigen_vecs[1].x * eigen_val[1], eigen_vecs[1].y * eigen_val[1]);
//通过对边界进行限定,提高算法效率,获得的结果能够保证此时的pa,pb都是最远的点
LineIterator it(img, pa, pb);
LineIterator it2(img, pb, pa);
LineIterator it3(img, pc, pd);
LineIterator it4(img, pd, pc);
for(int i = 0; i < it.count; i++, ++it)
{
if( 0 == pointPolygonTest(pts,it.pos(),true))//第一个在轮廓上的点
pa = it.pos();
}
for(int i = 0; i < it2.count; i++, ++it2)
{
if( 0 == pointPolygonTest(pts,it2.pos(),true))//第一个在轮廓上的点
pb = it2.pos();
}
for(int i = 0; i < it3.count; i++, ++it3)
{
if( 0 == pointPolygonTest(pts,it3.pos(),true))//第一个在轮廓上的点
pc = it3.pos();
}
for(int i = 0; i < it4.count; i++, ++it4)
{
if( 0 == pointPolygonTest(pts,it4.pos(),true))//第一个在轮廓上的点
pd = it4.pos();
}
//计算出直线,在长短轴上绘制直线
if (DEBUG)
{
line(img, pa,pb , CV_RGB(255, 255, 0),10);
line(img, pc,pd, CV_RGB(0, 255, 255),10);
}
//将 轮廓按照长短轴进行划分.这里_p[]得到的是4个边界最远点;而_length则是长度
Point _p[4];
float _length[4] = {-1,-1,-1,-1};
if (!SplitContoursByMiddleLine(pts,img,pa,pb,_p[0],_length[0],_p[1],_length[1]))
return false;
if (!SplitContoursByMiddleLine(pts,img,pc,pd,_p[2],_length[2],_p[3],_length[3]))
return false;
//开始获得结论
if (eigen_vecs[0].x == 0 || eigen_vecs[1].x == 0)//除数为0
return false;
float k_long = eigen_vecs[0].y /eigen_vecs[0].x;
float k_short = eigen_vecs[1].y /eigen_vecs[1].x;
if (k_long == k_short)//这种情况不应该出现
return false;
//返回长度
if (_length[0]<0 || _length[1]<0 || _length[2]<0 || _length[3]<0)
return false;
fshort = _length[0]+_length[1];
flong = _length[2]+_length[3];
//通过解析方法,获得最后结果
Point p[4];
p[0].x = (k_long * _p[0].x - k_short * _p[2].x + _p[2].y - _p[0].y) / (k_long - k_short);
p[0].y = (p[0].x - _p[0].x)*k_long + _p[0].y;
p[1].x = (k_long * _p[0].x - k_short * _p[3].x + _p[3].y - _p[0].y) / (k_long - k_short);
p[1].y = (p[1].x - _p[0].x)*k_long + _p[0].y;
p[2].x = (k_long * _p[1].x - k_short * _p[2].x + _p[2].y - _p[1].y) / (k_long - k_short);
p[2].y = (p[2].x - _p[1].x)*k_long + _p[1].y;
p[3].x = (k_long * _p[1].x - k_short * _p[3].x + _p[3].y - _p[1].y) / (k_long - k_short);
p[3].y = (p[3].x - _p[1].x)*k_long + _p[1].y;
//简单排序
if (p[1].x < p[0].x)
swap(p[1],p[0]);
if (p[3].x < p[2].x)
swap(p[3],p[2]);
//绘图
for (int i = 0;i<4;i++)
resultPts.push_back(p[i]);
//line(img,p[0],p[1],CV_RGB(0, 255, 255), 5);
//line(img,p[0],p[2],CV_RGB(0, 255, 255), 5);
//line(img,p[3],p[1],CV_RGB(0, 255, 255), 5);
//line(img,p[3],p[2],CV_RGB(0, 255, 255), 5);
return true;
}
//投影到x或Y轴上,上波形为vup,下波形为vdown,gap为误差间隔
void projection2(Mat src,vector<int>& vup,vector<int>& vdown,int direction,int gap){
Mat tmp = src.clone();
vector<int> vdate;
if (DIRECTION_X == direction){
for (int i=0;i<tmp.cols;i++){
Mat data = tmp.col(i);
int itmp = countNonZero(data);
vdate.push_back(itmp);
}
}else{
for (int i=0;i<tmp.rows;i++){
Mat data = tmp.row(i);
int itmp = countNonZero(data);
vdate.push_back(itmp);
}
}
//整形,去除长度小于gap的零的洞
if (vdate.size()<=gap)
return;
for (int i=0;i<vdate.size()-gap;i++){
if (vdate[i]>0 && vdate[i+gap]>0){
for (int j=i;j<i+gap;j++){
vdate[j] = 1;
}
i = i+gap-1;
}
}
//记录上下沿
for (int i=1;i<vdate.size();i++){
if (vdate[i-1] == 0 && vdate[i]>0)
vup.push_back(i);
if (vdate[i-1]>0 && vdate[i] == 0)
vdown.push_back(i);
}
}
//轮廓柔化
bool SmoothEdgeSingleChannel( Mat mInput,Mat &mOutput, double amount, double radius, uchar Threshold)
{
if(mInput.empty())
{
return 0;
}
if(radius<1)
radius=1;
Mat mGSmooth,mDiff,mAbsDiff;
mOutput = Mat(mInput.size(),mInput.type());
GaussianBlur(mInput,mGSmooth,Size(0,0),radius);
//imshow("mGSmooth",mGSmooth);
subtract(mGSmooth,mInput,mDiff);
//imshow("mDiff",mDiff);
mDiff*=amount;
threshold(abs(2* mDiff),mAbsDiff,Threshold,255,THRESH_BINARY_INV);
mDiff.setTo(Scalar(0),mAbsDiff);
//imshow("mDiff Multiplied",mDiff);
add(mInput,mDiff,mOutput);
return true;
}
#pragma endregion 图像处理
#pragma region 文件操作
//递归读取目录下全部文件
void getFiles(string path, vector<string>& files,string flag){
//文件句柄
long hFile = 0;
//文件信息
struct _finddata_t fileinfo;
string p;
if((hFile = _findfirst(p.assign(path).append("\\*").c_str(),&fileinfo)) != -1){
do{
//如果是目录,迭代之,如果不是,加入列表
if((fileinfo.attrib & _A_SUBDIR)){
if(strcmp(fileinfo.name,".") != 0 && strcmp(fileinfo.name,"..") != 0 && flag=="r")
getFiles( p.assign(path).append("\\").append(fileinfo.name), files,flag );
}
else{
files.push_back(p.assign(path).append("\\").append(fileinfo.name) );
}
}while(_findnext(hFile, &fileinfo) == 0);
_findclose(hFile);
}
}
//递归读取目录下全部图片
void getFiles(string path, vector<Mat>& files,string flag){
vector<string> fileNames;
getFiles(path,fileNames,flag);
for (int i=0;i<fileNames.size();i++){
Mat tmp = imread(fileNames[i]);
if (tmp.rows>0)//如果是图片
files.push_back(tmp);
}
}
//递归读取目录下全部图片和名称
void getFiles(string path, vector<pair<Mat,string>>& files,string flag){
vector<string> fileNames;
getFiles(path,fileNames,flag);
for (int i=0;i<fileNames.size();i++){
Mat tmp = imread(fileNames[i]);
if (tmp.rows>0){
pair<Mat,string> apir;
apir.first = tmp;