forked from G-Node/python-neuroshare
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathns-convert
executable file
·179 lines (143 loc) · 5.62 KB
/
ns-convert
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
import os, sys
import h5py
import neuroshare as ns
import numpy as np
import getopt
class ProgressIndicator(object):
def __init__(self, offset=0):
self._cur_value = offset
def setup(self, max_value):
self._max_value = max_value
self.progress (self._max_value, 0)
def __add__(self, other):
self._cur_value += other
self.progress (self._max_value, self._cur_value)
return self
def progress (self, max_value, cur_value):
pass
class Converter(object):
def __init__(self, filepath, output=None, progress=None):
if not output:
(basefile, ext) = os.path.splitext (filepath)
output = "%s.hdf5" % basefile
nf = ns.File(filepath)
h5 = h5py.File(output, 'w')
self._nf = nf
self._h5 = h5
self._groups = {}
self.convert_map = {1 : self.convert_event,
2 : self.convert_analog,
3 : self.convert_segment,
4 : self.convert_neural}
if not progress:
progress = ProgressIndicator()
self._progress = progress
def get_group_for_type(self, entity_type):
name_map = { 1 : 'Event',
2 : 'Analog',
3 : 'Segment',
4 : 'Neural'}
if not self._groups.has_key(entity_type):
name = name_map[entity_type]
group = self._h5.create_group(name)
self._groups[entity_type] = group
return self._groups[entity_type]
def convert(self):
progress = self._progress
progress.setup (len(self._nf.entities))
self.copy_metdata(self._h5, self._nf.metadata_raw)
for entity in self._nf.entities:
conv = self.convert_map[entity.entity_type]
conv(entity)
progress + 1
self._h5.close()
def convert_event(self, event):
dtype = self.dtype_by_event(event)
nitems = event.item_count
data = np.empty([nitems], dtype)
for n in xrange(0, event.item_count):
data[n] = event.get_data (n)
group = self.get_group_for_type(event.entity_type)
dset = group.create_dataset(event.label, data=data)
self.copy_metdata(dset, event.metadata_raw)
def convert_analog(self, analog):
(data, times, ic) = analog.get_data ()
group = self.get_group_for_type(analog.entity_type)
d_t = np.vstack((times, data)).T
dset = group.create_dataset(analog.label, data=d_t)
self.copy_metdata(dset, analog.metadata_raw)
def convert_segment(self, segment):
if not segment.item_count:
return
group = self.get_group_for_type(segment.entity_type)
seg_group = group.create_group(segment.label)
self.copy_metdata(seg_group, segment.metadata_raw)
for index in xrange(0, segment.source_count):
source = segment.sources[index]
name = 'SourceInfo.%d.' % index
self.copy_metdata(seg_group, source.metadata_raw, prefix=name)
for index in xrange(0,segment.item_count):
(data, timestamp, samples, unit) = segment.get_data (index)
name = '%d - %f' % (index, timestamp)
dset = seg_group.create_dataset(name, data=data.T)
dset.attrs['Timestamp'] = timestamp
dset.attrs['Unit'] = unit
dset.attrs['Index'] = index
def convert_neural(self, neural):
data = neural.get_data ()
group = self._groups[neural.entity_type]
name = "%d - %s" % (neural.id, neural.label)
dset = group.create_dataset(name, data=data)
self.copy_metdata(dset, neural.metadata_raw)
def copy_metdata(self, target, metadata, prefix=None):
for (key, value) in metadata.iteritems():
if prefix is not None:
key = prefix + key
target.attrs[key] = value
def dtype_by_event(self, event):
type_map = { ns.EventEntity.EVENT_TEXT : 's',
ns.EventEntity.EVENT_CSV : 's',
ns.EventEntity.EVENT_BYTE : 'b',
ns.EventEntity.EVENT_WORD : 'h',
ns.EventEntity.EVENT_DWORD : 'i'}
val_type = type_map[event.event_type]
if event.event_type < 2:
val_type + event.max_data_length
return np.dtype([('timestamp','d'),('value', val_type)])
class ConsoleIndicator(ProgressIndicator):
def __init__(self):
super(ConsoleIndicator, self).__init__()
self._size = 60
def progress(self, max_value, cur_value):
size = self._size
prefix = "Converting"
x = int (size*cur_value/max_value)
msg = "%s [%s%s] %i/%i\r" % (prefix, "#"*x, "." * (size-x),
cur_value, max_value)
self._last_msg = msg
sys.stdout.write(msg)
sys.stdout.flush()
def cleanup(self):
sys.stdout.write('%s\r' % (' '*len(self._last_msg)))
sys.stdout.flush()
def main(argv):
opts, rem = getopt.getopt(sys.argv[1:], 'o:', ['output=',
'version=',
])
output = None
for opt, arg in opts:
if opt in ("-o", "--output"):
output = arg
if len (rem) != 1:
print "Wrong number of arguments"
return -1;
filename = rem[0]
ci = ConsoleIndicator()
converter = Converter(filename, output, progress=ci);
converter.convert()
ci.cleanup()
return 0
if __name__ == "__main__":
res = main(sys.argv[1:])
sys.exit(res)