-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_frame.py
313 lines (292 loc) · 17 KB
/
feature_frame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import math
import csv
from gensim.models.ldamodel import LdaModel
from gensim.corpora import Dictionary
from config import lda_params
import preprocessing
def prepare_dataframe(df, context=True):
df.dropna(subset=['citation_sentence'], inplace=True)
df.fillna('', inplace=True)
df.reset_index(drop=True, inplace=True)
if context:
df['predecessor'] = df['predecessor'].astype(str)
df['successor'] = df['successor'].astype(str)
df['context'] = df['predecessor'] + ' ' + df['citation_sentence'] + ' ' + df['successor']
else:
df['context'] = df['citation_sentence']
df = df.groupby(['citation_key_lr', 'citation_key_cp'])['context'].apply(lambda x: ' '.join(x)).reset_index()
return df
def preprocess_doc(row, context=True):
citation_sentence = str(row['context'])
if lda_params['markers']:
citation_sentence = preprocessing.remove_markers(citation_sentence)
if lda_params['tokenize']:
citation_sentence = preprocessing.tokenize(citation_sentence)
if lda_params['pos_tags'] != ():
tags = preprocessing.lower(preprocessing.filter_pos_tags(citation_sentence, tags=lda_params['pos_tags']))
if lda_params['punctuation']:
citation_sentence = preprocessing.remove_punctuation(citation_sentence)
if lda_params['numbers']:
citation_sentence = preprocessing.remove_numbers(citation_sentence)
citation_sentence = preprocessing.lower(citation_sentence)
if lda_params['bigrams']:
bigrams = preprocessing.get_bigrams(citation_sentence)
if lda_params['trigrams']:
trigrams = preprocessing.get_trigrams(citation_sentence)
if lda_params['common_stopwords']:
citation_sentence = preprocessing.remove_common_stopwords(citation_sentence)
if lda_params['custom_stopwords']:
citation_sentence = preprocessing.remove_custom_stopwords(citation_sentence)
if lda_params['pos_tags'] != ():
citation_sentence = preprocessing.filter_pos(citation_sentence, tags)
citation_sentence = preprocessing.clean_doc(citation_sentence)
if lda_params['bigrams']:
bigrams = preprocessing.filter_n_grams(bigrams, citation_sentence)
if lda_params['trigrams']:
trigrams = preprocessing.filter_n_grams(trigrams, citation_sentence)
if lda_params['bigrams'] and not lda_params['trigrams']:
citation_sentence = citation_sentence + bigrams
if lda_params['trigrams'] and not lda_params['bigrams']:
citation_sentence = citation_sentence + trigrams
if lda_params['bigrams'] and lda_params['trigrams']:
citation_sentence = citation_sentence + bigrams + trigrams
if lda_params['lemmatize']:
citation_sentence = preprocessing.lemmatize(citation_sentence)
citation_sentence = preprocessing.clean_doc(citation_sentence)
return citation_sentence
def summarize_citation_df(df):
df = df[df['citation_sentence'].notnull()]
df_keys = df.loc[:,['citation_key_lr', 'citation_key_cp']]
df_keys['focal_citations'] = 0
df_keys = df_keys.groupby(['citation_key_lr', 'citation_key_cp']).agg({'focal_citations': 'count'}).reset_index()
df_bool = df.loc[:,['citation_key_lr',
'citation_key_cp',
'textual',
'separate',
'comp_sup',
'prp',
'pos_0',
'pos_1',
'pos_2',
'pos_3',
'pos_4',
'pos_5',
'ref_in_figure_description',
'ref_in_table_description',
'ref_in_heading']]
df_bool = df_bool.groupby(['citation_key_lr', 'citation_key_cp']).aggregate(np.sum)
df_bool = df_bool.reset_index()
df_else = df[['citation_key_lr', 'citation_key_cp', 'sentence_popularity','context_popularity', 'sentence_density', 'context_density','position_in_sentence', 'sentence_neg', 'sentence_neu', 'sentence_pos','sentence_compound', 'context_neg', 'context_neu', 'context_pos','context_compound']]
df_else = df_else.groupby(['citation_key_lr', 'citation_key_cp']).agg([np.min, np.max, np.mean])
df_else = df_else.reset_index()
df_else.columns = [' '.join(col).strip() for col in df_else.columns.values]
df_mention_position = df[['citation_key_lr', 'citation_key_cp', 'position_in_document']].drop_duplicates().reset_index()
df_mention_position['mention_positions_10'] = 0
df_mention_position['mention_positions_20'] = 0
df_mention_position['mention_positions_30'] = 0
df_mention_position['mention_positions_40'] = 0
df_mention_position['mention_positions_50'] = 0
df_mention_position['mention_positions_60'] = 0
df_mention_position['mention_positions_70'] = 0
df_mention_position['mention_positions_80'] = 0
df_mention_position['mention_positions_90'] = 0
df_mention_position['mention_positions_100'] = 0
for i,row in df_mention_position.iterrows():
# test for NaN
if row['position_in_document'] == '':
continue
mention_position = math.ceil(float(row['position_in_document'])*100) # mention position in the first x % of the paper
if 0 < mention_position <= 10:
df_mention_position.at[i, 'mention_positions_10'] +=1
if 10 < mention_position <= 20:
df_mention_position.at[i, 'mention_positions_20'] +=1
if 20 < mention_position <= 30:
df_mention_position.at[i, 'mention_positions_30'] +=1
if 30 < mention_position <= 40:
df_mention_position.at[i, 'mention_positions_40'] +=1
if 40 < mention_position <= 50:
df_mention_position.at[i, 'mention_positions_50'] +=1
if 50 < mention_position <= 60:
df_mention_position.at[i, 'mention_positions_60'] +=1
if 60 < mention_position <= 70:
df_mention_position.at[i, 'mention_positions_70'] +=1
if 70 < mention_position <= 80:
df_mention_position.at[i, 'mention_positions_80'] +=1
if 80 < mention_position <= 90:
df_mention_position.at[i, 'mention_positions_90'] +=1
if 90 < mention_position <= 100:
df_mention_position.at[i, 'mention_positions_100'] +=1
df_mention_position = df_mention_position.groupby(['citation_key_lr', 'citation_key_cp']).agg([np.sum])
df_mention_position = df_mention_position.reset_index()
df_mention_position.columns = [' '.join(col).strip() for col in df_mention_position.columns.values]
df_mention_position.drop(columns = ['index sum'], inplace=True)
df_mention_position.rename(columns={'mention_positions_10 sum': 'mention_positions_10',
'mention_positions_20 sum': 'mention_positions_20',
'mention_positions_30 sum': 'mention_positions_30',
'mention_positions_40 sum': 'mention_positions_40',
'mention_positions_50 sum': 'mention_positions_50',
'mention_positions_60 sum': 'mention_positions_60',
'mention_positions_70 sum': 'mention_positions_70',
'mention_positions_80 sum': 'mention_positions_80',
'mention_positions_90 sum': 'mention_positions_90',
'mention_positions_100 sum': 'mention_positions_100'}, inplace=True)
df_heading_category = df.loc[:,['citation_key_lr', 'citation_key_cp', 'heading_category']].drop_duplicates().reset_index()
df_heading_category['heading_category_NA'] = 0
df_heading_category['heading_category_intro'] = 0
df_heading_category['heading_category_background'] = 0
df_heading_category['heading_category_theory'] = 0
df_heading_category['heading_category_methods'] = 0
df_heading_category['heading_category_results'] = 0
df_heading_category['heading_category_implications'] = 0
df_heading_category['heading_category_appendix'] = 0
for i,row in df_heading_category.iterrows():
# test for NaN
if row['heading_category'] == '-':
df_heading_category.at[i, 'heading_category_NA'] +=1
if row['heading_category'] == 'introduction':
df_heading_category.at[i, 'heading_category_intro'] +=1
if row['heading_category'] == 'background':
df_heading_category.at[i, 'heading_category_background'] +=1
if row['heading_category'] == 'theory_frontend':
df_heading_category.at[i, 'heading_category_theory'] +=1
if row['heading_category'] == 'method':
df_heading_category.at[i, 'heading_category_methods'] +=1
if row['heading_category'] == 'results':
df_heading_category.at[i, 'heading_category_results'] +=1
if row['heading_category'] == 'implications':
df_heading_category.at[i, 'heading_category_implications'] +=1
if row['heading_category'] == 'appendix':
df_heading_category.at[i, 'heading_category_appendix'] +=1
df_heading_category = df_heading_category.groupby(['citation_key_lr', 'citation_key_cp']).agg([np.sum])
df_heading_category = df_heading_category.reset_index()
df_heading_category.columns = [' '.join(col).strip() for col in df_heading_category.columns.values]
df_heading_category.drop(columns = ['heading_category sum'], inplace=True)
df_heading_category.rename(columns={'heading_category_intro sum': 'heading_category_intro',
'heading_category_background sum': 'heading_category_background',
'heading_category_theory sum': 'heading_category_theory',
'heading_category_methods sum': 'heading_category_methods',
'heading_category_results sum': 'heading_category_results',
'heading_category_implications sum': 'heading_category_implications',
'heading_category_appendix sum': 'heading_category_appendix',
'heading_category_NA sum': 'heading_category_NA'}, inplace=True)
df = pd.merge(df_keys, df_bool, on=['citation_key_lr', 'citation_key_cp'])
df = pd.merge(df, df_else, on=['citation_key_lr', 'citation_key_cp'])
df = pd.merge(df, df_mention_position, on=['citation_key_lr', 'citation_key_cp'])
df = pd.merge(df, df_heading_category, on=['citation_key_lr', 'citation_key_cp'])
return df
if __name__ == '__main__':
CITATION = pd.read_csv('data/interim/CITATION.csv')
FEATURE_FRAME = prepare_dataframe(CITATION)
CITATION_summary = summarize_citation_df(CITATION)
FEATURE_FRAME = pd.merge(FEATURE_FRAME, CITATION_summary, on=['citation_key_lr', 'citation_key_cp'])
LR_CP = pd.read_csv('data/interim/LR_CP.csv')
FEATURE_FRAME = pd.merge(FEATURE_FRAME, LR_CP, on=['citation_key_lr', 'citation_key_cp'])
LR = pd.read_csv('data/interim/LR.csv')
FEATURE_FRAME = pd.merge(FEATURE_FRAME, LR.loc[:,['citation_key_lr', 'SYN','TT','TB','RG','CRI','RA']], on='citation_key_lr')
CP = pd.read_csv('data/interim/CP.csv')
FEATURE_FRAME = pd.merge(FEATURE_FRAME, CP.loc[:,['citation_key_cp', 'total_references', 'total_citations']], on='citation_key_cp')
FEATURE_FRAME['weighted_citation_count'] = FEATURE_FRAME['focal_citations'] / FEATURE_FRAME['total_citations']
FEATURE_FRAME['USE'] = FEATURE_FRAME['NOT'] == False
FEATURE_FRAME.drop(columns = ['context', 'NOT'], inplace=True)
FEATURE_FRAME = FEATURE_FRAME[['citation_key_lr',
'citation_key_cp',
'focal_citations',
'textual',
'separate',
'comp_sup',
'prp',
'pos_0',
'pos_1',
'pos_2',
'pos_3',
'pos_4',
'pos_5',
'sentence_popularity amin',
'sentence_popularity amax',
'sentence_popularity mean',
'context_popularity amin',
'context_popularity amax',
'context_popularity mean',
'sentence_density amin',
'sentence_density amax',
'sentence_density mean',
'context_density amin',
'context_density amax',
'context_density mean',
'position_in_sentence amin',
'position_in_sentence amax',
'position_in_sentence mean',
'sentence_neg amin',
'sentence_neg amax',
'sentence_neg mean',
'sentence_neu amin',
'sentence_neu amax',
'sentence_neu mean',
'sentence_pos amin',
'sentence_pos amax',
'sentence_pos mean',
'sentence_compound amin',
'sentence_compound amax',
'sentence_compound mean',
'context_neg amin',
'context_neg amax',
'context_neg mean',
'context_neu amin',
'context_neu amax',
'context_neu mean',
'context_pos amin',
'context_pos amax',
'context_pos mean',
'context_compound amin',
'context_compound amax',
'context_compound mean',
'self_citation',
'title_similarity',
'abstract_similarity',
'SYN',
'TT',
'TB',
'RG',
'CRI',
'RA',
'total_references',
'total_citations',
'weighted_citation_count',
'mention_positions_10',
'mention_positions_20',
'mention_positions_30',
'mention_positions_40',
'mention_positions_50',
'mention_positions_60',
'mention_positions_70',
'mention_positions_80',
'mention_positions_90',
'mention_positions_100',
'heading_category_NA',
'heading_category_intro',
'heading_category_background',
'heading_category_theory',
'heading_category_methods',
'heading_category_results',
'heading_category_implications',
'heading_category_appendix',
'ref_in_title',
'ref_in_heading',
'ref_in_figure_description',
'ref_in_table_description',
'SYN_TB',
'CRI_ADDR',
'RG_SYN',
'RG_CLOSE',
'RA_CLOSE',
'TB_TB',
'TB_TT',
'TB_RG',
'TT_TT',
'TT_RG',
'USE']]
FEATURE_FRAME.to_csv('data/processed/FEATURE_FRAME.csv', index=False, quoting=csv.QUOTE_ALL)