-
Notifications
You must be signed in to change notification settings - Fork 1
/
base_time.yaml
74 lines (74 loc) · 1.45 KB
/
base_time.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
###########
# GENERAL #
###########
import_keys:
value:
- dtype
- problem_factory
- optimizer_factory
- model_factory
- grad_model_factory
- model_kwargs.activation_factory
- model_kwargs.normalization_factory
- grad_model_kwargs.activation_factory
- grad_model_kwargs.normalization_factory
dtype:
value: "torch.float"
device:
value: null # defaults to 'cuda' if available, else 'cpu'
check_train:
value: true
check_test:
value: false
cuda_max_mem_train_mb:
value: null
cuda_max_mem_mb:
value: null
seed:
value: 123456789
############
# TRAINING #
############
optimizer_factory:
value: torch.optim.Adam
train_steps:
value: null
train_time_h:
value: 24
batch_size:
value: 1024
milestones:
value: 0.5
milestone_metric:
value: "time"
time_step:
value: [1.0e-02, 1.0e-03]
lr:
value: [5.0e-04, 5.0e-05]
sample_repetitions:
value: 1
save_freq:
value: 10
##############
# EVALUATION #
##############
visualize:
value: ["approx", "approx_grad", "plot", "plot_grad", "stats"]
test_freq:
value: 30
evaluator_kwargs.approx_batch_size:
value: 131072
evaluator_kwargs.approx_batches:
value: 10
evaluator_kwargs.grad_reduce:
value: "norm"
evaluator_kwargs.approx_p:
value: [1, 2, "infinity"]
evaluator_kwargs.stats_steps:
value: 30
evaluator_kwargs.stats_grad_thresh:
value: [0.1, 0.01, 0.001]
evaluator_kwargs.plot_interval_stretch:
value: 2.0
evaluator_kwargs.plot_time:
value: null # defaults to [0, T/2, T]