forked from saberSabersaber/transformer_OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
233 lines (188 loc) · 10.7 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import numpy
import string
import argparse
import os
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
import pandas as pd
from utils import CTCLabelConverter, AttnLabelConverter, TransformerLabelConverter
from dataset import RawDataset, AlignCollate
from model import Model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def demo(opt):
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
elif "Transformer" in opt.Prediction:
converter = TransformerLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
# prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
demo_data = RawDataset(root=opt.image_folder, opt=opt) # use RawDataset
demo_loader = torch.utils.data.DataLoader(
demo_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_demo, pin_memory=True)
# predict
model.eval()
with torch.no_grad():
for image_tensors, image_path_list in demo_loader:
batch_size = image_tensors.size(0)
image = image_tensors.to(device)
# For max length prediction
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred)
# Select max probabilty (greedy decoding) then decode index to character
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
_, preds_index = preds.max(2)
# preds_index = preds_index.view(-1)
preds_str = converter.decode(preds_index, preds_size)
else:
preds = model(image, text_for_pred, is_train=False)
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
log = open(f'./log_demo_result.txt', 'a')
dashed_line = '-' * 80
head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'
print(f'{dashed_line}\n{head}\n{dashed_line}')
log.write(f'{dashed_line}\n{head}\n{dashed_line}\n')
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
for img_name, pred, pred_max_prob in zip(image_path_list, preds_str, preds_max_prob):
if 'Attn' in opt.Prediction or "Transformer" in opt.Prediction:
pred_EOS = pred.find('[s]')
pred = pred[:pred_EOS] # prune after "end of sentence" token ([s])
pred_max_prob = pred_max_prob[:pred_EOS]
# calculate confidence score (= multiply of pred_max_prob)
confidence_score = pred_max_prob.cumprod(dim=0)[-1]
print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}')
log.write(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n')
log.close()
def output_word_acc(opt):
"""
"""
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
elif "Transformer" in opt.Prediction:
converter = TransformerLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
# prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
demo_data = RawDataset(root=opt.image_folder, opt=opt) # use RawDataset
demo_loader = torch.utils.data.DataLoader(
demo_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_demo, pin_memory=True)
# predict
model.eval()
with torch.no_grad():
pred_df = pd.DataFrame(data=[], columns = ['image_path', 'preds_str', 'preds_max_prob'])
for image_tensors, image_path_list in demo_loader:
batch_size = image_tensors.size(0)
image = image_tensors.to(device)
# For max length prediction
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred)
# Select max probabilty (greedy decoding) then decode index to character
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
_, preds_index = preds.max(2)
# preds_index = preds_index.view(-1)
preds_str = converter.decode(preds_index, preds_size)
else:
preds = model(image, text_for_pred, is_train=False)
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
log = open(f'./log_demo_result.txt', 'a')
dashed_line = '-' * 80
head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'
print(f'{dashed_line}\n{head}\n{dashed_line}')
log.write(f'{dashed_line}\n{head}\n{dashed_line}\n')
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
for img_name, pred, pred_max_prob in zip(image_path_list, preds_str, preds_max_prob):
if 'Attn' in opt.Prediction or "Transformer" in opt.Prediction:
pred_EOS = pred.find('[s]')
pred = pred[:pred_EOS] # prune after "end of sentence" token ([s])
pred_max_prob = pred_max_prob[:pred_EOS]
# calculate confidence score (= multiply of pred_max_prob)
try:
confidence_score = pred_max_prob.cumprod(dim=0)[-1]
except IndexError:
confidence_score = 0.0
print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}')
log.write(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n')
log.close()
# output dataframe result
list_of_preds = list(zip(image_path_list, preds_str, preds_max_prob))
curr_pred_df = pd.DataFrame(list_of_preds, columns = ['image_path', 'preds_str', 'preds_max_prob'])
pred_df = pred_df.append(curr_pred_df, ignore_index=True)
pred_result_path = os.path.join(opt.output_path, 'pred.csv')
pred_df.to_csv(pred_result_path, encoding='utf-8', sep='\t', index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_folder', required=True, help='path to image_folder which contains text images')
parser.add_argument('--output_path', required=True, help='path to predict result csv')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
opt = parser.parse_args()
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
# demo(opt)
output_word_acc(opt)