-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
134 lines (112 loc) · 5.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from __future__ import division
from __future__ import print_function
from time import strftime, localtime
import tensorflow as tf
import argparse
import numpy as np
from util import load_data
from models import BaseModel
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Set random seed
seed = 2019
np.random.seed(seed)
tf.set_random_seed(seed)
def parse_args():
parser = argparse.ArgumentParser(description="Run the DEMO-Net.")
parser.add_argument('--dataset', nargs='?', default='brazil',
help='Choose a dataset: brazil, europe or usa')
parser.add_argument('--epochs', type=int, default=1000,
help='Number of epochs.')
parser.add_argument('--dropout', type=int, default=0.6,
help='dropout rate (1 - keep probability).')
parser.add_argument('--patience', type=int, default=100,
help='patience to update the parameters.')
parser.add_argument('--lr', type=float, default=0.005,
help='Learning rate.')
parser.add_argument('--weight_decay', type=float, default=0.0005,
help='weight for l2 loss on embedding matrix')
parser.add_argument('--hash_dim', type=int, default=256,
help='Feature hashing dimension')
parser.add_argument('--hidden_dim', type=int, default=64,
help='Hidden units')
parser.add_argument('--n_hash_kernel', type=int, default=1,
help='Number of hash kernels')
parser.add_argument('--n_layers', type=int, default=2,
help='Number of hidden layers')
return parser.parse_args()
def construct_placeholder(num_nodes, fea_size, num_classes):
with tf.name_scope('input'):
placeholders = {
'labels': tf.placeholder(tf.float32, shape=(None, num_classes), name='labels'),
'features': tf.placeholder(tf.float32, shape=(num_nodes, fea_size), name='features'),
'dropout': tf.placeholder_with_default(0., shape=(), name='dropout'),
'masks': tf.placeholder(dtype=tf.int32, shape=(num_nodes,), name='masks'),
}
return placeholders
def train(args, data):
adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask, degreeTasks, neighbor_list = data
features = features.todense()
num_nodes, fea_size = features.shape
num_classes = y_train.shape[1]
placeholders = construct_placeholder(num_nodes, fea_size, num_classes)
model = BaseModel(placeholders, degreeTasks, neighbor_list, num_classes, fea_size, hash_dim=args.hash_dim,
hidden_dim=args.hidden_dim, num_hash=args.n_hash_kernel, num_layers=args.n_layers)
logits = model.inference()
log_resh = tf.reshape(logits, [-1, num_classes])
lab_resh = tf.reshape(placeholders['labels'], [-1, num_classes])
msk_resh = tf.reshape(placeholders['masks'], [-1])
loss = model.masked_softmax_cross_entropy(log_resh, lab_resh, msk_resh)
accuracy = model.masked_accuracy(log_resh, lab_resh, msk_resh)
train_op = model.training(loss, lr=args.lr, l2_coef=args.weight_decay)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer(), tf.tables_initializer())
vloss_min = np.inf
vacc_max = 0.0
curr_step = 0
with tf.Session() as sess:
sess.run(init_op)
vacc_early_model = 0.0
vlss_early_model = 0.0
for epoch in range(args.epochs):
train_feed_dict = {}
train_feed_dict.update({placeholders['labels']: y_train})
train_feed_dict.update({placeholders['features']: features})
train_feed_dict.update({placeholders['dropout']: args.dropout})
train_feed_dict.update({placeholders['masks']: train_mask})
_, loss_value_tr, acc_tr = sess.run([train_op, loss, accuracy], feed_dict=train_feed_dict)
val_feed_dict = {}
val_feed_dict.update({placeholders['labels']: y_val})
val_feed_dict.update({placeholders['features']: features})
val_feed_dict.update({placeholders['dropout']: 0.0})
val_feed_dict.update({placeholders['masks']: val_mask})
loss_value_val, acc_val = sess.run([loss, accuracy], feed_dict=val_feed_dict)
print('Training epoch %d-th: loss = %.5f, acc = %.5f | Val: loss = %.5f, acc = %.5f' %
(epoch + 1, loss_value_tr, acc_tr, loss_value_val, acc_val))
if acc_val >= vacc_max or loss_value_val <= vloss_min:
if acc_val >= vacc_max and loss_value_val <= vloss_min:
vacc_early_model = acc_val
vlss_early_model = loss_value_val
vacc_max = np.max((acc_val, vacc_max))
vloss_min = np.min((loss_value_val, vloss_min))
curr_step = 0
else:
curr_step += 1
if curr_step == args.patience:
print('Early stop! Min loss: ', vloss_min, ', Max accuracy: ', vacc_max)
print('Early stop model validation loss: ', vlss_early_model, ', accuracy: ', vacc_early_model)
break
test_feed_dict = {}
test_feed_dict.update({placeholders['labels']: y_test})
test_feed_dict.update({placeholders['features']: features})
test_feed_dict.update({placeholders['dropout']: 0.0})
test_feed_dict.update({placeholders['masks']: test_mask})
loss_value_test, acc_test = sess.run([loss, accuracy], feed_dict=test_feed_dict)
print('Test loss:', loss_value_test, '; Test accuracy:', acc_test)
sess.close()
if __name__ == '__main__':
time_stamp = strftime('%Y_%m_%d_%H_%M_%S', localtime())
print("The time of running the codes: ", time_stamp)
args = parse_args()
data = load_data(args.dataset)
train(args, data)