-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathVocoder.h
executable file
·136 lines (103 loc) · 3.19 KB
/
Vocoder.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <complex>
#include <span>
#include <tuple>
#include <vector>
#include <StftPitchShift/Arctangent.h>
namespace stftpitchshift
{
template<class T>
class Vocoder
{
public:
Vocoder(const size_t framesize, const size_t hopsize, const double samplerate) :
Vocoder(std::make_tuple(framesize, framesize), hopsize, samplerate)
{
}
Vocoder(const std::tuple<size_t, size_t> framesize, const size_t hopsize, const double samplerate)
{
const double pi = 2.0 * std::acos(-1.0);
const size_t dftsize = std::get<0>(framesize) / 2 + 1;
stft_freq_inc = samplerate / std::get<0>(framesize);
stft_phase_inc = pi * hopsize / std::get<0>(framesize);
encode_phase_buffer.resize(dftsize);
decode_phase_buffer.resize(dftsize);
decode_phase_offset.resize(dftsize);
if (std::get<1>(framesize) != std::get<0>(framesize))
{
for (size_t i = 0; i < dftsize; ++i)
{
// compensate asymmetric synthesis window by virtual time shifting #38
decode_phase_offset[i] = pi * i * std::get<1>(framesize) / dftsize;
}
}
}
void reset()
{
// zero both phase buffers according to #45
std::fill(encode_phase_buffer.begin(), encode_phase_buffer.end(), 0);
std::fill(decode_phase_buffer.begin(), decode_phase_buffer.end(), 0);
}
void encode(const std::span<std::complex<T>> dft)
{
assert(dft.size() == encode_phase_buffer.size());
double frequency,
phase,
delta,
j;
for (size_t i = 0; i < dft.size(); ++i)
{
phase = angle(dft[i]);
delta = phase - encode_phase_buffer[i];
encode_phase_buffer[i] = phase;
j = wrap(delta - i * stft_phase_inc) / stft_phase_inc;
frequency = (i + j) * stft_freq_inc;
dft[i] = std::complex<T>(
std::abs(dft[i]),
static_cast<T>(frequency));
}
}
void decode(const std::span<std::complex<T>> dft)
{
assert(dft.size() == decode_phase_buffer.size());
double frequency,
phase,
delta,
j;
for (size_t i = 0; i < dft.size(); ++i)
{
frequency = dft[i].imag();
j = (frequency - i * stft_freq_inc) / stft_freq_inc;
delta = (i + j) * stft_phase_inc;
decode_phase_buffer[i] += delta;
phase = decode_phase_buffer[i];
phase -= decode_phase_offset[i]; // #38
dft[i] = std::polar<T>(
dft[i].real(),
static_cast<T>(phase));
}
}
private:
double stft_freq_inc;
double stft_phase_inc;
std::vector<double> encode_phase_buffer;
std::vector<double> decode_phase_buffer;
std::vector<double> decode_phase_offset;
inline static double angle(const std::complex<double>& z)
{
#if defined(ENABLE_ARCTANGENT_APPROXIMATION)
return Arctangent::atan2(z);
#else
return std::arg(z);
#endif
}
inline static double wrap(const double phase)
{
const double pi = 2.0 * 3.14159265358979323846;
return phase - pi * std::floor(phase / pi + 0.5);
}
};
}