forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gfpgan_model.py
116 lines (86 loc) · 3.77 KB
/
gfpgan_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import sys
import traceback
import facexlib
import gfpgan
import modules.face_restoration
from modules import paths, shared, devices, modelloader
model_dir = "GFPGAN"
user_path = None
model_path = os.path.join(paths.models_path, model_dir)
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
have_gfpgan = False
loaded_gfpgan_model = None
def gfpgann():
global loaded_gfpgan_model
global model_path
if loaded_gfpgan_model is not None:
loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan)
return loaded_gfpgan_model
if gfpgan_constructor is None:
return None
models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN")
if len(models) == 1 and "http" in models[0]:
model_file = models[0]
elif len(models) != 0:
latest_file = max(models, key=os.path.getctime)
model_file = latest_file
else:
print("Unable to load gfpgan model!")
return None
if hasattr(facexlib.detection.retinaface, 'device'):
facexlib.detection.retinaface.device = devices.device_gfpgan
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
loaded_gfpgan_model = model
return model
def send_model_to(model, device):
model.gfpgan.to(device)
model.face_helper.face_det.to(device)
model.face_helper.face_parse.to(device)
def gfpgan_fix_faces(np_image):
model = gfpgann()
if model is None:
return np_image
send_model_to(model, devices.device_gfpgan)
np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
model.face_helper.clean_all()
if shared.opts.face_restoration_unload:
send_model_to(model, devices.cpu)
return np_image
gfpgan_constructor = None
def setup_model(dirname):
global model_path
if not os.path.exists(model_path):
os.makedirs(model_path)
try:
from gfpgan import GFPGANer
from facexlib import detection, parsing # noqa: F401
global user_path
global have_gfpgan
global gfpgan_constructor
load_file_from_url_orig = gfpgan.utils.load_file_from_url
facex_load_file_from_url_orig = facexlib.detection.load_file_from_url
facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url
def my_load_file_from_url(**kwargs):
return load_file_from_url_orig(**dict(kwargs, model_dir=model_path))
def facex_load_file_from_url(**kwargs):
return facex_load_file_from_url_orig(**dict(kwargs, save_dir=model_path, model_dir=None))
def facex_load_file_from_url2(**kwargs):
return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=model_path, model_dir=None))
gfpgan.utils.load_file_from_url = my_load_file_from_url
facexlib.detection.load_file_from_url = facex_load_file_from_url
facexlib.parsing.load_file_from_url = facex_load_file_from_url2
user_path = dirname
have_gfpgan = True
gfpgan_constructor = GFPGANer
class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration):
def name(self):
return "GFPGAN"
def restore(self, np_image):
return gfpgan_fix_faces(np_image)
shared.face_restorers.append(FaceRestorerGFPGAN())
except Exception:
print("Error setting up GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)