forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modelloader.py
157 lines (133 loc) · 6.3 KB
/
modelloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import shutil
import importlib
from urllib.parse import urlparse
from modules import shared
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
from modules.paths import script_path, models_path
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
"""
A one-and done loader to try finding the desired models in specified directories.
@param download_name: Specify to download from model_url immediately.
@param model_url: If no other models are found, this will be downloaded on upscale.
@param model_path: The location to store/find models in.
@param command_path: A command-line argument to search for models in first.
@param ext_filter: An optional list of filename extensions to filter by
@return: A list of paths containing the desired model(s)
"""
output = []
try:
places = []
if command_path is not None and command_path != model_path:
pretrained_path = os.path.join(command_path, 'experiments/pretrained_models')
if os.path.exists(pretrained_path):
print(f"Appending path: {pretrained_path}")
places.append(pretrained_path)
elif os.path.exists(command_path):
places.append(command_path)
places.append(model_path)
for place in places:
for full_path in shared.walk_files(place, allowed_extensions=ext_filter):
if os.path.islink(full_path) and not os.path.exists(full_path):
print(f"Skipping broken symlink: {full_path}")
continue
if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist):
continue
if full_path not in output:
output.append(full_path)
if model_url is not None and len(output) == 0:
if download_name is not None:
from basicsr.utils.download_util import load_file_from_url
dl = load_file_from_url(model_url, places[0], True, download_name)
output.append(dl)
else:
output.append(model_url)
except Exception:
pass
return output
def friendly_name(file: str):
if "http" in file:
file = urlparse(file).path
file = os.path.basename(file)
model_name, extension = os.path.splitext(file)
return model_name
def cleanup_models():
# This code could probably be more efficient if we used a tuple list or something to store the src/destinations
# and then enumerate that, but this works for now. In the future, it'd be nice to just have every "model" scaler
# somehow auto-register and just do these things...
root_path = script_path
src_path = models_path
dest_path = os.path.join(models_path, "Stable-diffusion")
move_files(src_path, dest_path, ".ckpt")
move_files(src_path, dest_path, ".safetensors")
src_path = os.path.join(root_path, "ESRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path)
src_path = os.path.join(models_path, "BSRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path, ".pth")
src_path = os.path.join(root_path, "gfpgan")
dest_path = os.path.join(models_path, "GFPGAN")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "SwinIR")
dest_path = os.path.join(models_path, "SwinIR")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/")
dest_path = os.path.join(models_path, "LDSR")
move_files(src_path, dest_path)
def move_files(src_path: str, dest_path: str, ext_filter: str = None):
try:
if not os.path.exists(dest_path):
os.makedirs(dest_path)
if os.path.exists(src_path):
for file in os.listdir(src_path):
fullpath = os.path.join(src_path, file)
if os.path.isfile(fullpath):
if ext_filter is not None:
if ext_filter not in file:
continue
print(f"Moving {file} from {src_path} to {dest_path}.")
try:
shutil.move(fullpath, dest_path)
except Exception:
pass
if len(os.listdir(src_path)) == 0:
print(f"Removing empty folder: {src_path}")
shutil.rmtree(src_path, True)
except Exception:
pass
def load_upscalers():
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
# so we'll try to import any _model.py files before looking in __subclasses__
modules_dir = os.path.join(shared.script_path, "modules")
for file in os.listdir(modules_dir):
if "_model.py" in file:
model_name = file.replace("_model.py", "")
full_model = f"modules.{model_name}_model"
try:
importlib.import_module(full_model)
except Exception:
pass
datas = []
commandline_options = vars(shared.cmd_opts)
# some of upscaler classes will not go away after reloading their modules, and we'll end
# up with two copies of those classes. The newest copy will always be the last in the list,
# so we go from end to beginning and ignore duplicates
used_classes = {}
for cls in reversed(Upscaler.__subclasses__()):
classname = str(cls)
if classname not in used_classes:
used_classes[classname] = cls
for cls in reversed(used_classes.values()):
name = cls.__name__
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
commandline_model_path = commandline_options.get(cmd_name, None)
scaler = cls(commandline_model_path)
scaler.user_path = commandline_model_path
scaler.model_download_path = commandline_model_path or scaler.model_path
datas += scaler.scalers
shared.sd_upscalers = sorted(
datas,
# Special case for UpscalerNone keeps it at the beginning of the list.
key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
)