-
Notifications
You must be signed in to change notification settings - Fork 128
/
ernst.py
146 lines (122 loc) · 5.06 KB
/
ernst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import logging
from sage.all import RR
from sage.all import ZZ
from sage.all import gcd
from shared import small_roots
def integer_trivariate_1(f, m, t, W, X, Y, Z, check_bounds=True, roots_method="groebner"):
"""
Computes small integer roots of a trivariate polynomial.
More information: Ernst M. et al., "Partial Key Exposure Attacks on RSA Up to Full Size Exponents" (Section 4.1.1)
:param f: the polynomial
:param m: the parameter m
:param t: the parameter t
:param W: the parameter W
:param X: an approximate bound on the x roots
:param Y: an approximate bound on the y roots
:param Z: an approximate bound on the z roots
:param check_bounds: perform bounds check (default: True)
:param roots_method: the method to use to find roots (default: "groebner")
:return: a generator generating small roots (tuples of x, y, and z roots) of the polynomial
"""
pr = f.parent()
x, y, z = pr.gens()
tau = t / m
if check_bounds and RR(X) ** (1 + 3 * tau) * RR(Y) ** (2 + 3 * tau) * RR(Z) ** (1 + 3 * tau + 3 * tau ** 2) > RR(W) ** (1 + 3 * tau):
logging.debug(f"Bound check failed for {m = }, {t = }")
return
R = int(f.constant_coefficient())
assert R != 0
while gcd(R, X) != 1:
X += 1
while gcd(R, Y) != 1:
Y += 1
while gcd(R, Z) != 1:
Z += 1
while gcd(R, W) != 1:
W += 1
n = (X * Y) ** m * Z ** (m + t) * W
assert gcd(R, n) == 1
f_ = (pow(R, -1, n) * f % n).change_ring(ZZ)
logging.debug("Generating shifts...")
shifts = []
for i in range(m + 1):
for j in range(m - i + 1):
for k in range(j + 1):
g = x ** i * y ** j * z ** k * f_ * X ** (m - i) * Y ** (m - j) * Z ** (m + t - k)
shifts.append(g)
for k in range(j + 1, j + t + 1):
h = x ** i * y ** j * z ** k * f_ * X ** (m - i) * Y ** (m - j) * Z ** (m + t - k)
shifts.append(h)
for i in range(m + 2):
j = m + 1 - i
for k in range(j + 1):
g_ = n * x ** i * y ** j * z ** k
shifts.append(g_)
for k in range(j + 1, j + t + 1):
h_ = n * x ** i * y ** j * z ** k
shifts.append(h_)
L, monomials = small_roots.create_lattice(pr, shifts, [X, Y, Z])
L = small_roots.reduce_lattice(L)
polynomials = small_roots.reconstruct_polynomials(L, f, n, monomials, [X, Y, Z])
for roots in small_roots.find_roots(pr, [f] + polynomials, method=roots_method):
yield roots[x], roots[y], roots[z]
def integer_trivariate_2(f, m, t, W, X, Y, Z, check_bounds=True, roots_method="groebner"):
"""
Computes small integer roots of a trivariate polynomial.
More information: Ernst M. et al., "Partial Key Exposure Attacks on RSA Up to Full Size Exponents" (Section 4.1.2)
:param f: the polynomial
:param m: the parameter m
:param t: the parameter t
:param W: the parameter W
:param X: an approximate bound on the x roots
:param Y: an approximate bound on the y roots
:param Z: an approximate bound on the z roots
:param check_bounds: perform bounds check (default: True)
:param roots_method: the method to use to find roots (default: "groebner")
:return: a generator generating small roots (tuples of x, y, and z roots) of the polynomial
"""
pr = f.parent()
x, y, z = pr.gens()
tau = t / m
if check_bounds and RR(X) ** (2 + 3 * tau) * RR(Y) ** (3 + 6 * tau + 3 * tau ** 2) * RR(Z) ** (3 + 3 * tau) > RR(W) ** (2 + 3 * tau):
logging.debug(f"Bound check failed for {m = }, {t = }")
return
R = int(f.constant_coefficient())
assert R != 0
while gcd(R, X) != 1:
X += 1
while gcd(R, Y) != 1:
Y += 1
while gcd(R, Z) != 1:
Z += 1
while gcd(R, W) != 1:
W += 1
n = X ** m * Y ** (m + t) * Z ** m * W
assert gcd(R, n) == 1
f_ = (pow(R, -1, n) * f % n).change_ring(ZZ)
logging.debug("Generating shifts...")
shifts = []
for i in range(m + 1):
for j in range(m - i + 1):
for k in range(m - i + 1):
g = x ** i * y ** j * z ** k * f_ * X ** (m - i) * Y ** (m + t - j) * Z ** (m - k)
shifts.append(g)
for j in range(m - i + 1, m - i + t + 1):
for k in range(m - i + 1):
h = x ** i * y ** j * z ** k * f_ * X ** (m - i) * Y ** (m + t - j) * Z ** (m - k)
shifts.append(h)
for i in range(m + 2):
for j in range(m + t + 2 - i):
k = m + 1 - i
g_ = n * x ** i * y ** j * z ** k
shifts.append(g_)
for i in range(m + 1):
j = m + t + 1 - i
for k in range(m - i + 1):
h_ = n * x ** i * y ** j * z ** k
shifts.append(h_)
L, monomials = small_roots.create_lattice(pr, shifts, [X, Y, Z])
L = small_roots.reduce_lattice(L)
polynomials = small_roots.reconstruct_polynomials(L, f, n, monomials, [X, Y, Z])
for roots in small_roots.find_roots(pr, [f] + polynomials, method=roots_method):
yield roots[x], roots[y], roots[z]