diff --git a/Construction/Comma/Adjunction.v b/Construction/Comma/Adjunction.v index d3299649..630a089f 100644 --- a/Construction/Comma/Adjunction.v +++ b/Construction/Comma/Adjunction.v @@ -56,7 +56,7 @@ Context {G : C ⟶ D}. Definition πD := comma_proj1. Definition πC := comma_proj2. -#[local] Notation "⟨πD,πC⟩" := comma_proj (at level 100). +#[local] Notation "⟨πD,πC⟩" := comma_proj (at level 0). Record lawvere_equiv := { lawvere_iso : F ↓ Id[C] ≅[Cat] Id[D] ↓ G; diff --git a/Functor/Applicative.v b/Functor/Applicative.v index cf0f2d21..bd7a85f1 100644 --- a/Functor/Applicative.v +++ b/Functor/Applicative.v @@ -36,4 +36,4 @@ Arguments Applicative {_ _} F. Arguments pure {C _ F _ _ _}. Notation "pure[ F ]" := (@pure _ _ F _ _ _) - (at level 9, format "pure[ F ]") : morphism_scope. + (at level 0, format "pure[ F ]") : morphism_scope. diff --git a/Functor/Diagonal.v b/Functor/Diagonal.v index a51127cf..7e2b0ccd 100644 --- a/Functor/Diagonal.v +++ b/Functor/Diagonal.v @@ -26,12 +26,12 @@ Program Instance Diagonal_Product `(C : Category) : C ⟶ C ∏ C. End Diagonal_Product. -Notation "Δ[ J ]( c )" := (Diagonal J c) (at level 90, format "Δ[ J ]( c )") : functor_scope. +Notation "Δ[ J ]( c )" := (Diagonal J c) (at level 0, format "Δ[ J ]( c )") : functor_scope. Require Import Category.Instance.One. -Notation "Δ( c )" := (Diagonal _ c) (at level 90, format "Δ( c )") : functor_scope. -Notation "=( c )" := (Diagonal 1 c) (at level 90, format "=( c )") : functor_scope. +Notation "Δ( c )" := (Diagonal _ c) (at level 0, format "Δ( c )") : functor_scope. +Notation "=( c )" := (Diagonal 1 c) (at level 0, format "=( c )") : functor_scope. Definition Δ {C J : Category} := @Diagonal C J. diff --git a/Functor/Product/Internal.v b/Functor/Product/Internal.v index fe5ec29c..2ce47d41 100644 --- a/Functor/Product/Internal.v +++ b/Functor/Product/Internal.v @@ -25,4 +25,4 @@ Next Obligation. Qed. Notation "×( C )" := (@InternalProductFunctor C _) - (at level 90, format "×( C )") : functor_scope. + (at level 0, format "×( C )") : functor_scope. diff --git a/Functor/Structure/Monoidal/Pure.v b/Functor/Structure/Monoidal/Pure.v index f1ba43f6..e09c443c 100644 --- a/Functor/Structure/Monoidal/Pure.v +++ b/Functor/Structure/Monoidal/Pure.v @@ -53,4 +53,4 @@ End Pure. Arguments pure {C _ F _ _ A}. Notation "pure[ F ]" := (@pure _ _ F _ _ _) - (at level 9, format "pure[ F ]") : morphism_scope. + (at level 0, format "pure[ F ]") : morphism_scope. diff --git a/Instance/Cones/Limit.v b/Instance/Cones/Limit.v index 141a2c3e..6e5105c5 100644 --- a/Instance/Cones/Limit.v +++ b/Instance/Cones/Limit.v @@ -11,7 +11,7 @@ Program Definition Limit_Cones `(F : J ⟶ C) `{T : @Terminal (Cones F)} : Limit F := {| limit_cone := @terminal_obj _ T; ump_limits := fun N => - {| unique_obj := `1 @one _ T N - ; unique_property := `2 @one _ T N + {| unique_obj := `1 (@one _ T N) + ; unique_property := `2 (@one _ T N) ; uniqueness := fun v H => @one_unique _ T N (@one _ T N) (v; H) |} |}. diff --git a/Instance/Coq/Applicative.v b/Instance/Coq/Applicative.v index f8d0ddeb..4dbd297a 100644 --- a/Instance/Coq/Applicative.v +++ b/Instance/Coq/Applicative.v @@ -35,11 +35,11 @@ Arguments ap {F _ _ _} _ x. Coercion Applicative_Functor `{@Applicative F} : Coq ⟶ Coq := F. -Notation "pure[ F ]" := (@pure F _ _) (at level 19, F at next level). -Notation "pure[ F G ]" := (@pure (fun x => F (G x)) _ _) (at level 9). +Notation "pure[ F ]" := (@pure F _ _) (at level 0, F at next level). +Notation "pure[ F G ]" := (@pure (fun x => F (G x)) _ _) (at level 0). -Notation "ap[ F ]" := (@ap F _ _ _) (at level 9). -Notation "ap[ F G ]" := (@ap (fun x => F (G x)) _ _ _) (at level 9). +Notation "ap[ F ]" := (@ap F _ _ _) (at level 0). +Notation "ap[ F G ]" := (@ap (fun x => F (G x)) _ _ _) (at level 0). Infix "<*>" := ap (at level 29, left associativity). Notation "x <**> F" := (ap F x) (at level 29, left associativity). diff --git a/Theory/Coq/Applicative.v b/Theory/Coq/Applicative.v index d23fcb3a..82d25c4e 100644 --- a/Theory/Coq/Applicative.v +++ b/Theory/Coq/Applicative.v @@ -28,16 +28,16 @@ Module ApplicativeNotations. Export FunctorNotations. Notation "pure[ M ]" := (@pure M _ _) - (at level 9, format "pure[ M ]"). + (at level 0, format "pure[ M ]"). Notation "pure[ M N ]" := (@pure (fun X => M (N X)) _ _) - (at level 9, format "pure[ M N ]"). + (at level 0, format "pure[ M N ]"). Notation "ap[ M ]" := (@ap M _ _ _) - (at level 9, format "ap[ M ]"). + (at level 0, format "ap[ M ]"). Notation "ap[ M N ]" := (@ap (fun X => M (N X)) _ _ _) - (at level 9, format "ap[ M N ]"). + (at level 0, format "ap[ M N ]"). Notation "ap[ M N O ]" := (@ap (fun X => M (N (O X))) _ _ _) - (at level 9, format "ap[ M N O ]"). + (at level 0, format "ap[ M N O ]"). Infix "<*>" := ap (at level 29, left associativity). Infix "<*[ M ]>" := (@ap M _ _ _) diff --git a/Theory/Coq/Functor.v b/Theory/Coq/Functor.v index c8bc2ee5..b046bfbc 100644 --- a/Theory/Coq/Functor.v +++ b/Theory/Coq/Functor.v @@ -32,22 +32,22 @@ Notation "x <&> f" := (fmap f x) (at level 29, left associativity, only parsing). Notation "fmap[ M ]" := (@fmap M _ _ _) - (at level 9, format "fmap[ M ]"). + (at level 0, format "fmap[ M ]"). Notation "fmap[ M N ]" := (@fmap (λ X, M (N X)) _ _ _) - (at level 9, format "fmap[ M N ]"). + (at level 0, format "fmap[ M N ]"). Notation "fmap[ M N O ]" := (@fmap (λ X, M (N (O X))) _ _ _) - (at level 9, format "fmap[ M N O ]"). + (at level 0, format "fmap[ M N O ]"). Infix ">$<" := contramap (at level 29, left associativity, only parsing). Notation "x >&< f" := (contramap f x) (at level 29, left associativity, only parsing). Notation "contramap[ M ]" := (@contramap M _ _ _) - (at level 9, format "contramap[ M ]"). + (at level 0, format "contramap[ M ]"). Notation "contramap[ M N ]" := (@contramap (λ X, M (N X)) _ _ _) - (at level 9, format "contramap[ M N ]"). + (at level 0, format "contramap[ M N ]"). Notation "contramap[ M N O ]" := (@contramap (λ X, M (N (O X))) _ _ _) - (at level 9, format "contramap[ M N O ]"). + (at level 0, format "contramap[ M N O ]"). End FunctorNotations. diff --git a/Theory/Functor.v b/Theory/Functor.v index fa85500c..29f04219 100644 --- a/Theory/Functor.v +++ b/Theory/Functor.v @@ -57,9 +57,9 @@ Notation "x <&> f" := (fmap f x) (at level 29, left associativity, only parsing) : morphism_scope. Notation "fobj[ F ]" := (@fobj _ _ F%functor) - (at level 9, format "fobj[ F ]") : object_scope. + (at level 0, format "fobj[ F ]") : object_scope. Notation "fmap[ F ]" := (@fmap _ _ F%functor _ _) - (at level 9, format "fmap[ F ]") : morphism_scope. + (at level 0, format "fmap[ F ]") : morphism_scope. #[export] Hint Rewrite @fmap_id : categories. @@ -168,7 +168,7 @@ Program Definition Id {C : Category} : C ⟶ C := {| Arguments Id {C} /. -Notation "Id[ C ]" := (@Id C) (at level 9, format "Id[ C ]") : functor_scope. +Notation "Id[ C ]" := (@Id C) (at level 0, format "Id[ C ]") : functor_scope. Program Definition Compose {C D E : Category} (F : D ⟶ E) (G : C ⟶ D) : C ⟶ E := {| diff --git a/Theory/Sheaf.v b/Theory/Sheaf.v index 721c213c..2ae2bd16 100644 --- a/Theory/Sheaf.v +++ b/Theory/Sheaf.v @@ -3,6 +3,8 @@ Require Import Category.Theory.Category. Require Import Category.Theory.Functor. Require Import Category.Construction.Opposite. Require Import Category.Instance.Fun. +Require Import Category.Instance.Sets. +Require Import Coq.Vectors.Vector. Generalizable All Variables. @@ -16,3 +18,74 @@ Definition Presheaves {U C : Category} := [U^op, C]. Definition Copresheaf (U C : Category) := U ⟶ C. Definition Copresheaves {U C : Category} := [U, C]. + +(* Custom data type to express Forall propositions on vectors over Type. *) +Inductive ForallT {A : Type} (P : A → Type) : + ∀ {n : nat}, t A n → Type := + | ForallT_nil : ForallT (nil A) + | ForallT_cons (n : nat) (x : A) (v : t A n) : + P x → ForallT v → ForallT (cons A x n v). + +Inductive ExistsT {A : Type} (P : A → Type) : + ∀ {n : nat}, t A n → Type := + | ExistsT_cons_hd (m : nat) (x : A) (v : t A m) : + P x → ExistsT (cons A x m v) + | ExistsT_cons_tl (m : nat) (x : A) (v : t A m) : + ExistsT v → ExistsT (cons A x m v). + +(* A coverage on a category C consists of a function assigning to each object + U ∈ C a collection of families of morphisms { fᵢ : Uᵢ → U } (i∈I), called + covering families, such that + + if { fᵢ : Uᵢ → U } (i∈I) is a covering family + and g : V → U is a morphism, + then there exists a covering family { hⱼ : Vⱼ → V } + such that each composite g ∘ hⱼ factors through some fᵢ. *) + +Class Site (C : Category) := { + covering_family (u : C) := sigT (Vector.t (∃ uᵢ, uᵢ ~> u)); + + coverage (u : C) : covering_family u; + + coverage_condition + (u : C) (fs : covering_family u) + (v : C) (g : v ~> u) : + ∃ hs : covering_family v, + ForallT (A := ∃ vⱼ, vⱼ ~> v) (λ '(vⱼ; hⱼ), + ExistsT (A := ∃ uᵢ, uᵢ ~> u) (λ '(uᵢ; fᵢ), + ∃ k : vⱼ ~> uᵢ, fᵢ ∘ k ≈ g ∘ hⱼ) + (`2 fs)) + (`2 hs) +}. + +(* If { fᵢ : Uᵢ → U } (i∈I) is a family of morphisms with codomain U, + a presheaf X : Cᵒᵖ → Set is called a sheaf for this family if: + + for any collection of elements xᵢ ∈ X(Uᵢ) + such that, + whenever g : V → Uᵢ and h : V → Uⱼ + are such that fᵢ ∘ g = fⱼ ∘ h, + we have X(g)(xᵢ) = X(h)(xⱼ), + then there exists a unique x ∈ X(U) + such that X(fᵢ)(x) = xᵢ for all i . *) + +Class Sheaf `{@Site C} (X : Presheaf C Sets) := { + restriction : + ∀ u : C, + let '(i; f) := coverage u in + ForallT + (A := ∃ uᵢ, uᵢ ~> u) + (λ '(uᵢ; fᵢ), + ∀ xᵢ : X uᵢ, + (∀ (v : C) (g : v ~> uᵢ), + ForallT + (A := ∃ uⱼ, uⱼ ~> u) + (λ '(uⱼ; fⱼ), + ∀ h : v ~> uⱼ, + fᵢ ∘ g ≈ fⱼ ∘ h → + ∀ xⱼ : X uⱼ, + fmap[X] g xᵢ = fmap[X] h xⱼ) + f) → + ∃! x : X u, fmap[X] fᵢ x = xᵢ) + f +}.